TY - INPR A1 - Titov, Evgenii A1 - Humeniuk, Alexander A1 - Mitric, Roland T1 - Comparison of moving and fixed basis sets for nonadiabatic quantum dynamics at conical intersections T2 - Chemical Physics N2 - We assess the performance of two different types of basis sets for nonadiabatic quantum dynamics at conical intersections. The basis sets of both types are generated using Ehrenfest trajectories of nuclear coherent states. These trajectories can either serve as a moving (time-dependent) basis or be employed to sample a fixed (time-independent) basis. We demonstrate on the example of two-state two-dimensional and three-state five-dimensional models that both basis set types can yield highly accurate results for population transfer at intersections, as compared with reference quantum dynamics. The details of wave packet evolutions are discussed for the case of the two-dimensional model. The fixed basis is found to be superior to the moving one in reproducing nonlocal spreading and maintaining correct shape of the wave packet upon time evolution. Moreover, for the models considered, the fixed basis set outperforms the moving one in terms of computational efficiency. KW - Nonadiabatic quantum dynamics Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-199225 UR - https://doi.org/10.1016/j.chemphys.2019.110526 N1 - Submitted version ER - TY - INPR A1 - Titov, Evgenii A1 - Humeniuk, Alexander A1 - Mitric, Roland T1 - Comparison of moving and fixed basis sets for nonadiabatic quantum dynamics at conical intersections T2 - Chemical Physics N2 - We assess the performance of two different types of basis sets for nonadiabatic quantum dynamics at conical intersections. The basis sets of both types are generated using Ehrenfest trajectories of nuclear coherent states. These trajectories can either serve as a moving (time-dependent) basis or be employed to sample a fixed (time-independent) basis. We demonstrate on the example of two-state two-dimensional and three-state five-dimensional models that both basis set types can yield highly accurate results for population transfer at intersections, as compared with reference quantum dynamics. The details of wave packet evolutions are discussed for the case of the two-dimensional model. The fixed basis is found to be superior to the moving one in reproducing true nonlocal spreading and maintaining correct shape of the wave packet upon time evolution. Moreover, for the models considered, the fixed basis set outperforms the moving one in terms of computational efficiency. KW - Nonadiabatic quantum dynamics Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-198699 UR - https://doi.org/10.1016/j.chemphys.2019.110526 N1 - Accepted manuscript ER - TY - INPR A1 - Titov, Evgenii A1 - Humeniuk, Alexander A1 - Mitric, Roland T1 - Exciton localization in excited-state dynamics of a tetracene trimer: A surface hopping LC-TDDFTB study T2 - Physical Chemistry Chemical Physics N2 - Excitons in the molecular aggregates of chromophores are key participants in important processes such as photosynthesis or the functioning of organic photovoltaic devices. Therefore, the exploration of exciton dynamics is crucial. Here we report on exciton localization during excited-state dynamics of the recently synthesized tetracene trimer [Liu et al., Org. Lett., 2017, 19, 580]. We employ the surface hopping approach to nonadiabatic molecular dynamics in conjunction with the long-range corrected time-dependent density functional tight binding (LC-TDDFTB) method [Humeniuk and Mitrić, Comput. Phys. Commun., 2017, 221, 174]. Utilizing a set of descriptors based on the transition density matrix, we perform comprehensive analysis of exciton dynamics. The obtained results reveal an ultrafast exciton localization to a single tetracene unit of the trimer during excited-state dynamics, along with exciton transfer between units. KW - Exciton dynamics Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-198680 UR - https://doi.org/10.1039/C8CP05240A N1 - Accepted Manuscript ER -