TY - JOUR A1 - Vogel, Sebastian A1 - Gossner, Martin M. A1 - Mergner, Ulrich A1 - Müller, Jörg A1 - Thorn, Simon T1 - Optimizing enrichment of deadwood for biodiversity by varying sun exposure and tree species: An experimental approach JF - Journal of Applied Ecology N2 - The enrichment of deadwood is essential for the conservation of saproxylic biodiversity in managed forests. However, existing strategies focus on a cost‐intensive increase of deadwood amount, while largely neglecting increasing deadwood diversity. Deadwood objects, that is logs and branches, from six tree species were experimentally sun exposed, canopy shaded and artificially shaded for 4 years, after which the alpha‐, beta‐ and gamma‐diversity of saproxylic beetles, wood‐inhabiting fungi and spiders were analysed. Analyses of beta‐diversity included the spatial distance between exposed deadwood objects. A random‐drawing procedure was used to identify the combination of tree species and sun exposure that yielded the highest gamma‐diversity at a minimum of exposed deadwood amount. In sun‐exposed plots, species numbers in logs were higher than in shaded plots for all taxa, while in branches we observed the opposite for saproxylic beetles. Tree species affected the species numbers only of saproxylic beetles and wood‐inhabiting fungi. The beta‐diversity of saproxylic beetles and wood‐inhabiting fungi among logs was influenced by sun exposure and tree species, but beta‐diversity of spiders by sun exposure only. For all saproxylic taxa recorded in logs, differences between communities increased with increasing spatial distance. A combination of canopy‐shaded Carpinus logs and sun‐exposed Populus logs resulted in the highest species numbers of all investigated saproxylic taxa among all possible combinations of tree species and sun‐exposure treatments. Synthesis and applications. We recommend incorporating the enrichment of different tree species and particularly the variation in sun exposure into existing strategies of deadwood enrichment. Based on the results of our study, we suggest to combine the logs of softwood broadleaf tree species (e.g. Carpinus, Populus), hardwood broadleaf tree species (e.g. Quercus) and coniferous tree species (e.g. Pinus) under different conditions of sun exposure and distribute them spatially in a landscape to maximize the beneficial effects on overall diversity. KW - broadleaf tree species KW - deadwood enrichment KW - forest conservation KW - forest management KW - saproxylic beetles KW - spiders KW - sun exposure KW - wood‐inhabiting fungi Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-214614 VL - 57 IS - 10 SP - 2075 EP - 2085 ER - TY - JOUR A1 - Boetzl, Fabian A. A1 - Ries, Elena A1 - Schneider, Gudrun A1 - Krauss, Jochen T1 - It’s a matter of design - how pitfall trap design affects trap samples and possible predictions JF - PeerJ N2 - Background: Pitfall traps are commonly used to assess ground dwelling arthropod communities. The effects of different pitfall trap designs on the trapping outcome are poorly investigated however they might affect conclusions drawn from pitfall trap data greatly. Methods: We tested four pitfall trap types which have been used in previous studies for their effectiveness: a simple type, a faster exchangeable type with an extended plastic rim plate and two types with guidance barriers (V- and X-shaped). About 20 traps were active for 10 weeks and emptied biweekly resulting in 100 trap samples. Results: Pitfall traps with guidance barriers were up to five times more effective than simple pitfall traps and trap samples resulted in more similar assemblage approximations. Pitfall traps with extended plastic rim plates did not only perform poorly but also resulted in distinct carabid assemblages with less individuals of small species and a larger variation. Discussion: Due to the obvious trait filtering and resulting altered assemblages, we suggest not to use pitfall traps with extended plastic rim plates. In comprehensive biodiversity inventories, a smaller number of pitfall traps with guidance barriers and a larger number of spatial replicates is of advantage, while due to comparability reasons, the use of simple pitfall traps will be recommended in most other cases. KW - biodiversity estimation KW - spiders KW - carabid beetles KW - ground dwelling predators KW - staphylinid beetles KW - sampling method KW - inventory KW - species richness Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-176870 VL - 6 IS - e5078 ER - TY - JOUR A1 - Floren, Andreas A1 - Mupepele, Anne-Christine A1 - Müller, Tobias A1 - Dittrich, Marcus T1 - Are Temperate Canopy Spiders Tree-Species Specific? N2 - Arboreal spiders in deciduous and coniferous trees were investigated on their distribution and diversity. Insecticidal knock-down was used to comprehensively sample spiders from 175 trees from 2001 to 2003 in the Białowieża forest and three remote forests in Poland. We identified 140 species from 9273 adult spiders. Spider communities were distinguished between deciduous and coniferous trees. The richest fauna was collected from Quercus where beta diversity was also highest. A tree-species-specific pattern was clearly observed for Alnus, Carpinus, Picea and Pinus trees and also for those tree species that were fogged in only four or three replicates, namely Betula and Populus. This hitherto unrecognised association was mainly due to the community composition of common species identified in a Dufrene-Legendre indicator species analysis. It was not caused by spatial or temporal autocorrelation. Explaining tree-species specificity for generalist predators like spiders is difficult and has to involve physical and ecological tree parameters like linkage with the abundance of prey species. However, neither did we find a consistent correlation of prey group abundances with spiders nor could differences in spider guild composition explain the observed pattern. Our results hint towards the importance of deterministic mechanisms structuring communities of generalist canopy spiders although the casual relationship is not yet understood. KW - trees KW - spiders KW - conifers KW - forests KW - predation KW - oaks KW - community structures KW - pines Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-111413 ER -