TY - JOUR A1 - Ghanawi, Hanaa A1 - Hennlein, Luisa A1 - Zare, Abdolhossein A1 - Bader, Jakob A1 - Salehi, Saeede A1 - Hornburg, Daniel A1 - Ji, Changhe A1 - Sivadasan, Rajeeve A1 - Drepper, Carsten A1 - Meissner, Felix A1 - Mann, Matthias A1 - Jablonka, Sibylle A1 - Briese, Michael A1 - Sendtner, Michael T1 - Loss of full-length hnRNP R isoform impairs DNA damage response in motoneurons by inhibiting Yb1 recruitment to chromatin JF - Nucleic Acids Research N2 - Neurons critically rely on the functions of RNA-binding proteins to maintain their polarity and resistance to neurotoxic stress. HnRNP R has a diverse range of post-transcriptional regulatory functions and is important for neuronal development by regulating axon growth. Hnrnpr pre-mRNA undergoes alternative splicing giving rise to a full-length protein and a shorter isoform lacking its N-terminal acidic domain. To investigate functions selectively associated with the full-length hnRNP R isoform, we generated a Hnrnpr knockout mouse (Hnrnpr\(^{tm1a/tm1a}\)) in which expression of full-length hnRNP R was abolished while production of the truncated hnRNP R isoform was retained. Motoneurons cultured from Hnrnpr\(^{tm1a/tm1a}\) mice did not show any axonal growth defects but exhibited enhanced accumulation of double-strand breaks and an impaired DNA damage response upon exposure to genotoxic agents. Proteomic analysis of the hnRNP R interactome revealed the multifunctional protein Yb1 as a top interactor. Yb1-depleted motoneurons were defective in DNA damage repair. We show that Yb1 is recruited to chromatin upon DNA damage where it interacts with gamma-H2AX, a mechanism that is dependent on full-length hnRNP R. Our findings thus suggest a novel role of hnRNP R in maintaining genomic integrity and highlight the function of its N-terminal acidic domain in this context. KW - nuclear ribonucleoprotein-R KW - determining gene-product KW - actin messenger RNA KW - comet assay KW - genome wide KW - spinal cord KW - YB-1 KW - SMN KW - interacts KW - enrichment Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-265687 VL - 49 IS - 21 ER - TY - JOUR A1 - Afonso-Grunz, Fabian A1 - Hoffmeier, Klaus A1 - Müller, Sören A1 - Westermann, Alexander J. A1 - Rotter, Björn A1 - Vogel, Jörg A1 - Winter, Peter A1 - Kahl, Günter T1 - Dual 3'Seq using deepSuperSAGE uncovers transcriptomes of interacting Salmonella enterica Typhimurium and human host cells JF - BMC Genomics N2 - Background: The interaction of eukaryotic host and prokaryotic pathogen cells is linked to specific changes in the cellular proteome, and consequently to infection-related gene expression patterns of the involved cells. To simultaneously assess the transcriptomes of both organisms during their interaction we developed dual 3'Seq, a tag-based sequencing protocol that allows for exact quantification of differentially expressed transcripts in interacting pro-and eukaryotic cells without prior fixation or physical disruption of the interaction. Results: Human epithelial cells were infected with Salmonella enterica Typhimurium as a model system for invasion of the intestinal epithelium, and the transcriptional response of the infected host cells together with the differential expression of invading and intracellular pathogen cells was determined by dual 3'Seq coupled with the next-generation sequencing-based transcriptome profiling technique deepSuperSAGE (deep Serial Analysis of Gene Expression). Annotation to reference transcriptomes comprising the operon structure of the employed S. enterica Typhimurium strain allowed for in silico separation of the interacting cells including quantification of polycistronic RNAs. Eighty-nine percent of the known loci are found to be transcribed in prokaryotic cells prior or subsequent to infection of the host, while 75% of all protein-coding loci are represented in the polyadenylated transcriptomes of human host cells. Conclusions: Dual 3'Seq was alternatively coupled to MACE (Massive Analysis of cDNA ends) to assess the advantages and drawbacks of a library preparation procedure that allows for sequencing of longer fragments. Additionally, the identified expression patterns of both organisms were validated by qRT-PCR using three independent biological replicates, which confirmed that RELB along with NFKB1 and NFKB2 are involved in the initial immune response of epithelial cells after infection with S. enterica Typhimurium. KW - complete genome sequence KW - secretion systems KW - RNA-Seq KW - deepSuperSAGE KW - transcriptome KW - gene expression KW - serovar Typhimurium KW - human macrophages KW - epithelial cells KW - infection KW - SuperSAGE KW - receptors KW - Dual 3'seq KW - MACE KW - tag based KW - simultaneous KW - genome wide KW - gene expression profiling KW - host pathogen interaction KW - Salmonella enterica Typhimurium strain SL1344 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-143230 VL - 16 IS - 323 ER -