TY - THES A1 - Vellmer, Tim T1 - New insights into the histone variant H2A.Z incorporation pathway in \(Trypanosoma\) \(brucei\) T1 - Neue Erkenntnisse zum Einbau der Histonvariante H2A.Z in \(Trypanosoma\) \(brucei\) N2 - The histone variant H2A.Z is a key player in transcription regulation in eukaryotes. Histone acetylations by the NuA4/TIP60 complex are required to enable proper incorporation of the histone variant and to promote the recruitment of other complexes and proteins required for transcription initiation. The second key player in H2A.Z-mediated transcription is the chromatin remodelling complex SWR1, which replaces the canonical histone H2A with its variant. By the time this project started little was known about H2A.Z in the unicellular parasite Trypanosoma brucei. Like in other eukaryotes H2A.Z was exclusively found in the transcription start sites of the polycistronic transcription units where it keeps the chromatin in an open conformation to enable RNA-polymerase II-mediated transcription. Previous studies showed the variant colocalizing with an acetylation of lysine on histone H4 and a methylation of lysine 4 on histone H3. Data indicated that HAT2 is linked to H2A.Z since it is required for acetylation of lyinse 10 on histone H4. A SWR1-like complex and a complex homologous to the NuA4/TIP60 could not be identified yet. This study aimed at identifying a SWR1-like remodelling complex in T. brucei and at identifying a protein complex orthologous to NuA4/TIP60 as well as at answering the question whether HAT2 is part of this complex or not. To this end, I performed multiple mass spectrometry-coupled co-Immunoprecipitation assays with potential subunits of a SWR1 complex, HAT2 and a putative homolog of a NuA4/TIP60 subunit. In the course of these experiments, I was able to identify the TbSWR1 complex. Subsequent cell fractionation and chromatin immunoprecipitation-coupled sequencing analysis experiments confirmed, that this complex is responsible for the incorporation of the histone variant H2A.Z in T. brucei. In addition to this chromatin remodelling complex, I was also able to identify two histone acetyltransferase complexes assembled around HAT1 and HAT2. In the course of my study data were published by the research group of Nicolai Siegel that identified the histone acetyltransferase HAT2 as being responsible for histone H4 acetylation, in preparation to promote H2A.Z incorporation. The data also indicated that HAT1 is responsible for acetylation of H2A.Z. According to the literature, this acetylation is required for proper transcription initiation. Experimental data generated in this study indicated, that H2A.Z and therefore TbSWR1 is involved in the DNA double strand break response of T. brucei. The identification of the specific complex composition of all three complexes provided some hints about how they could interact with each other in the course of transcription regulation and the DNA double strand break response. A proximity labelling approach performed with one of the subunits of the TbSWR1 complex identified multiple transcription factors, PTM writers and proteins potentially involved in chromatin maintenance. Overall, this work will provide some interesting insights about the composition of the complexes involved in H2A.Z incorporation in T. brucei. Furthermore, it is providing valuable information to set up experiments that could shed some light on RNA-polymerase II-mediated transcription and chromatin remodelling in T. brucei in particular and Kinetoplastids in general. N2 - Die Histonvariante H2A.Z ist ein Schlüsselelement bei der Transkriptionsregulation in Eukaryoten. Histonacetylierungen die vom NuA4/Tip60 Komplex prozessiert werden, sind für den korrekten Einbau der Variante unerlässlich. Darüber hinaus erlauben diese posttranslationellen Modifikationen die Rekrutierung weiterer Proteine und Komplexe die für die Transkription notwendig sind. Ein weiteres Schlüsselelement der mittels H2A.Z regulierten Transkription ist der Komplex zur Umstrukturierung des Chromatins SWR1, welcher das kanonische Histon H2A gegen seine Variante austauscht. Zu Beginn dieses Projektes war der Wissenstand bezüglich der Histonvariante H2A.Z in dem einzelligen Parasiten Trypanosoma brucei limitiert. Wie in anderen eukaryotischen Organismen wurde die Variante ausschließlich an den Startpunkten der polyzistronischen Transkriptionseinheiten gefunden, an denen es für die Öffnung des Chromatins verantwortlich ist und so die Transkription mittels RNAPolymerase II ermöglicht. Vorangegangene Studien konnten zeigen, dass die Variante mit einer Acetylierung des Lysins 10 im Histon H4 und einer Methylierung des Lysins 4 im Histon H3 co-lokalisiert. Einige Daten lieferten den Hinwies, dass die Histon-Acetyltransferase HAT2 mit H2A.Z in Zusammenhang steht, da diese die Acetylierung des Lysins 10 im Hinston H4 prozessiert. Komplexe die in ihrer Funktion dem SWR1 oder dem NuA4/TIP60 Komplex entsprechen, konnten bisher noch nicht gefunden werden. Die vorliegende Arbeit zielt darauf ab Komplexe zu identifizieren, die in ihrer Funktion dem SWR1 sowie dem NuA4/TIP60 Komplex entsprechen. Zudem soll die Frage geklärt werden ob HAT2 Teil eines möglichen NuA4/TIP60 Komplexes ist. In diesem Zusammenhang habe ich mehrere Massenspektrometrie gekoppelte Co-Immunopräzipitationen mit potenziellen Untereinheiten eines SWR1 Komplexes sowie HAT2 und einem Protein welches otholog zu einer NuA4/TIP60 Untereinheit ist, durchgeführt. Im Verlauf dieser Experimente konnte der SWR1 Komplex in T. brucei (TbSWR1) identifiziert werden. Anschließende Zellfraktionierungen sowie Chromatin Immunopräzipitationen gekoppelte Sequenzanalysen konnten bestätigen, dass der identifizierte Komplex für den Einbau der Histonvariante H2A.Z zuständig ist. Darüber hinaus konnten neben diesem Komplex noch zwei weitere Komplexe identifiziert werden, die jeweils die Histonacetyltransferasen HAT1 und HAT2 als Kernkomponenten enthalten. Im Verlauf meiner Arbeit wurden von der Arbeitsgruppe von Nicolai Siegel Daten publiziert die zeigten, dass die Histonacetyltransferase HAT2, in Vorbereitung auf den Einbau von H2A.Z, für die Acetylierung des Histons H4 verantwortlich ist. Im Gegenzug ist HAT1 für die Acetylierung von H2A.Z notwendig, welche wiederum für die korrekte Initiation der Transkription benötigt wird. Damit entspricht die Funktion der Acetylierung von H2A.Z in T. brucei der in der Literatur beschriebenen Funktion. Experimentelle Daten die im Verlauf dieser Arbeit generiert wurden, lieferten einen Hinweis darauf, dass H2A.Z auch an der Reparatur von DNS Doppelstrangbrüchen beteiligt ist. Die Aufschlüsselung der spezifischen Zusammensetzung aller drei Komplexe gab einige Hinweise darauf, wie sie sowohl während der Transkriptionsregulation als auch der Reparatur von DNS Doppelstrangbrüchen miteinander interagieren. Im Zuge einer molekularen Umgebungskartierung, die mit einer der Untereinheiten des TbSWR1 Komplexes durchgeführt wurde, konnten mehrere Transkriptionsfaktoren und Enzyme zur Histonmodifizierung identifiziert werden. Dabei wurden auch einige Proteine identifiziert, welche möglicherweise mit der Umformung des Chromatins in Zusammenhang stehen. Abschließend ist festzuhalten, dass diese Arbeit einige äußerst interessante Einsichten über die Zusammensetzung der Komplexe, die am H2A.Z Einbau in T. brucei beteiligt sind, liefern konnte. Darüber hinaus stellt sie einige wertvolle Informationen zur Verfügung. Diese könnten zur gezielten Planung von Experimenten genutzt werden, um mehr über RNA-Polymerase II vermittelte Transkription und Chromatin Umstrukturierung in T. brucei im speziellen und in Kinetoplastiden im Allgemeinen zu erfahren. KW - Chromatinremodelling KW - Histone KW - Transkription KW - Chromatinremodeling KW - Histones KW - Variants KW - Complexes Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-257960 ER - TY - THES A1 - Kraus, Amelie Johanna T1 - H2A.Z – a molecular guardian of RNA polymerase II transcription in African trypanosomes T1 - H2A.Z – eine molekulare Wächterin der RNA Polymerase II Transkription in Afrikanischen Trypanosomen N2 - In eukaryotes, the enormously long DNA molecules need to be packaged together with histone proteins into nucleosomes and further into compact chromatin structures to fit it into the nucleus. This nuclear organisation interferes with all phases of transcription that require the polymerase to bind to DNA. During transcription – the process in which the hereditary information stored in DNA is transferred to many transportable RNA molecules - nucleosomes form a physical obstacle for polymerase progression. Thus, transcription is usually accompanied by processes mediating nucleosome destabilisation, including post-translational histone modifications (PTMs) or exchange of canonical histones by their variant forms. To the best of our knowledge, acetylation of histones has the highest capability to induce chromatin opening. The lysine modification can destabilise histone-DNA interactions within a nucleosome and can serve as a binding site for various chromatin remodelers that can modify the nucleosome composition. For example, H4 acetylation can impede chromatin folding and can stimulate the exchange of canonical H2A histone by its variant form H2A.Z at transcription start sites (TSSs) in many eukaryotes, including humans. As histone H4, H2A.Z can be post-translationally acetylated and as acetylated H4, acetylated H2A.Z is enriched at TSSs suggested to be critical for transcription. However, thus far, it has been difficult to study the cause and consequence of H2A.Z acetylation. Even though, genome-wide chromatin profiling studies such as ChIP-seq have already revealed the genomic localisation of many histone PTMs and variant proteins, they can only be used to study individual chromatin marks and not to identify all factors important for establishing a distinct chromatin structure. This would require a comprehensive understanding of all marks associated to a specific genomic locus. However, thus far, such analyses of locus-specific chromatin have only been successful for repetitive regions, such as telomeres. In my doctoral thesis, I used the unicellular parasite Trypanosoma brucei as a model system for chromatin biology and took advantage of its chromatin landscape with TSSs comprising already 7% of the total T. brucei genome (humans: 0.00000156%). Atypical for a eukaryote, the protein-coding genes are arranged in long polycistronic transcription units (PTUs). Each PTU is controlled by its own ~10 kb-wide TSS, that lies upstream of the PTU. As observed in other eukaryotes, TSSs are enriched with nucleosomes containing acetylated histones and the histone variant H2A.Z. This is why I used T. brucei to particularly investigate the TSS-specific chromatin structures and to identify factors involved in H2A.Z deposition and transcription regulation in eukaryotes. To this end, I established an approach for locus-specific chromatin isolation that would allow me to identify the TSSs- and non-TSS-specific chromatin marks. Later, combining the approach with a method for quantifying lysine-specific histone acetylation levels, I found H2A.Z and H4 acetylation enriched in TSSs-nucleosomes and mediated by the histone acetyltransferases HAT1 and HAT2. Depletion of HAT2 reduced the levels of TSS-specific H4 acetylation, affected targeted H2A.Z deposition and shifted the sites of transcription initiation. Whereas HAT1 depletion had only a minor effect on H2A.Z deposition, it had a strong effect on H2A.Z acetylation and transcription levels. My findings demonstrate a clear link between histone acetylation, H2A.Z deposition and transcription initiation in the early diverged unicellular parasite T. brucei, which was thus far not possible to determine in other eukaryotes. Overall, my study highlights the usefulness of T. brucei as a model system for studying chromatin biology. My findings allow the conclusion that H2A.Z regardless of its modification state defines sites of transcription initiation, whereas H2A.Z acetylation is essential co-factor for transcription initiation. Altogether, my data suggest that TSS-specific chromatin establishment is one of the earliest developed mechanisms to control transcription initiation in eukaryotes. N2 - In Eukaryoten muss die genomische DNA zusammen mit Histonproteinen zu Nukleosomen und weiter zu kompakten Chromatinstrukturen verpackt werden, damit sie in den Zellkern passt. Diese Organisation behindert die Transkription bei jedem Schritt, bei dem die Polymerase an der DNA bindet. Während der Transkription – dem Prozess bei dem die in der DNA gespeicherte Erbinformation in viele transportable RNA Molekülen umgewandelt wird – stellen Nukleosomen ein physikalisches Hindernis für das Vorankommen der Polymerase dar. Aus diesem Grund wird die Transkription üblicherweise von Prozessen begleitet, die für die Destabilisierung der Nukleosomen sorgen, wie zum Beispiel post-translationale Modifizierung (PTM) der Histone oder der Austausch von kanonischen Histonproteinen durch eine ihrer Varianten. Soweit bisher bekannt ist Histonacetylierung am besten dafür geeignet, eine offene Chromatinstruktur bereit zu stellen. Die Lysinmodifizierung kann Interaktionen zwischen der DNA und den Histonen innerhalb eines Nukleosomes destabilisieren und als Andockstelle für einige Proteinkomplexe sogenannte Chromatin-Modellierer fungieren, die die Zusammensetzung eines Nukleosomes verändern können. Zum Beispiel, kann Acetylierung am Histon H4 das „Zusammenfalten“ des Chromatins erschweren und den Austausch von kanonischem H2A mit ihrer Variante H2A.Z an den Transkriptiosinitiationsstellen (TSSen) in vielen eukaryotischen Organismen, Menschen eingeschlossen, stimulieren. Wie Histon H4, kann auch H2A.Z post-translationell acetyliert werden und wie acetyliertes H4, findet man auch acetyliertes H2A.Z vor allem an TSSen. Deswegen geht man davon aus, dass es sehr wichtig für die Transkriptioninitiierung ist. Allerdings war es bisher nicht möglich, die Ursache und Wirkung von H2A.Z Acetylierung genauer zu untersuchen. Genom-weite Chromatinprofilstudien wie z.B. ChIP-Seq ermöglichen es die genomische Lokalisierung von vielen Histon-Modifizierungen und -Varianten zu bestimmen. Dennoch reichen sie nicht dafür aus alle Faktoren, die für die Bildung einer bestimmten Chromatinstruktur notwendig sind, gleichzeitig herauszufinden. Das würde voraussetzen, dass man alle Merkmale der genomischen Stelle kennt. Bisher waren Analysen von spezifischen Chromatinstellen nur erfolgreich, wenn das Chromatin von einer repetitiven Region, wie z.B. Telomeren, stammt. In meiner Doktorarbeit verwendete ich den einzelligen Parasiten Trypanosoma brucei als Modelsystem für Chromatinbiologie. Dabei machte ich mir dessen Chromatinorganisation zunutze, die eher untypisch für einen eukaryotische Organismus ist. TSSen machen hier ungefähr 7% des gesamten Genoms aus (Mensch: 0.00000156%). Protein-kodierende Gene sind in langen polycistronischen Transkriptionseinheiten (PTE) angeordnet. Jede dieser Einheiten besitzt eine eigene TSS, die vor der PTE liegt, und bis zu 10 kb lang sein kann. Jedoch, wie in anderen Eukaryoten, sind an den TSSen Nukleosomen angereichert, die sich durch acetylierte Histone und den Einbau der Histonvariante H2A.Z auszeichnen. Aus diesen Gründen verwendete ich T. brucei, um während meiner Doktorarbeit die Chromatinstrukturen, die TSSen auszeichnen, genauer zu untersuchen und die Faktoren, die bei der H2A.Z Positionierung und dadurch bei der Transkriptionsregulation in Eukaryoten eine Rolle spielen, herauszufinden. Dafür etablierte ich zuerst eine Methode, mit der man Chromatin von einer bestimmten genomischen Stelle isolieren kann und die es mir ermöglichen würde, die Merkmale von TSS-spezifischen und -unspezifischen Chromatin zu identifizieren. Später konnte ich das entwickelte Protokoll mit einer Methode zur Quantifizierung von Lysin-spezifischen Histonacetylierung kombinieren. Dadurch konnte ich herausfinden, dass Nukleosomen an trypanosomischen TSSen stark acetyliertes H2A.Z und H4 enthalten und dass für diese Modifizierungen die Histonacetyltransferasen HAT1 und HAT2 verantwortlich sind. Eine Reduzierung der HAT2-Levels führte zu einer Reduzierung von H4 Acetylierung, verschlechterte die gezielte H2A.Z Positionierung und führte dazu, dass die Transkriptioninitiierung sich verlagerte. Wohingegen eine Reduzierung von HAT1, die zwar nur einen kleinen Einfluss auf die H2A.Z Positionierung hatte, eine sehr starke Verringerung von acetyliertem H2A.Z und der Transkriptionsrate zur Folge hatte. Durch meine Ergebnisse konnte ich zeigen, dass in T. brucei, einem evolutionär divergenten eukaryotischem Organismus, die Prozesse der Histonacetylierung, H2A.Z Positionierung und Transkriptionsinitiierung sehr stark miteinander verbunden sind. Meine Arbeit ist des weiteren ein Beweis dafür, dass T. brucei ein sehr wichtiger Modellorganismus für die Forschung an Chromatin ist. Insgesamt erlauben meine Ergebnisse die Schlussfolgerung, dass H2A.Z, egal ob modifiziert oder nicht, ein Herausstellungsmerkmal für TSSen ist, während acetyliertes H2A.Z essentiell für die Transkriptionsinitiierung darstellt. Zusammengefasst, weisen die Daten meiner Doktorarbeit darauf hin, dass die Etablierung von bestimmten Chromatinstrukturen an TSSen eines der frühesten entwickelten Mechanismen zur Kontrolle der Transkriptionsinitiierung in Eukaryoten ist. KW - Chromatin KW - Histone KW - Histonacetyltransferase KW - Transcription KW - Acetylation KW - H2A.Z KW - Trypanosoma Brucei KW - Histone Acetylation KW - Transcription KW - Chromatin KW - Histone KW - Histone modification KW - Histone variant Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-250568 ER - TY - THES A1 - Müller-Hübner, Laura T1 - The role of nuclear architecture in the context of antigenic variation in Trypanosoma brucei T1 - Über die Rolle der Zellkernarchitektur im Kontext von Antigenvariation in Trypanosoma brucei N2 - Antigenic variation of surface proteins is a commonly used strategy among pathogens to evade the host immune response [63]. The mechanism underlying antigenic variation relies on monoallelic exclusion of a single gene from a hypervariable multigene family combined with repeated, systematic changes in antigen expression. In many systems, these gene families are arranged in subtelomeric contingency loci that are subject to both transcriptional repression and enhanced mutagenesis and recombination [16]. Eviction of a selected gene from a repressed antigen repertoire can be achieved e.g. by recombination into a dedicated, transcriptionally permissive site or by local epigenetic alterations in chromatin composition of the selected gene. Both processes are ultimately affected by genome architecture. Architectural proteins controlling antigenic variation have, however, remained elusive in any pathogen. The unicellular protozoan parasite Trypanosoma brucei evades the host immune response by periodically changing expression of a single variant surface glycoprotein (VSG) from a repertoire of ~3000 VSG genes – the largest mutually exclusively expressed gene family described today. To activate a selected VSG gene, it needs to be located in a dedicated expression site that becomes subject to relocation into a distinct, transcriptionally active subnuclear compartment, the expression site body (ESB). Whereas this emphasizes the importance of nuclear architecture in regulating antigen expression in T. brucei, the mechanisms underlying spatial positioning of DNA in T. brucei are not well understood. In this study I applied genome-wide chromosome conformation capture (Hi-C) to obtain a comprehensive picture of the T. brucei genome in three dimensions, both in procyclic and bloodstream form parasites. Hi-C revealed a highly structured nucleus with megabase chromosomes occupying distinct chromosome territories. Further, specific trans interactions between chromosomes, among which are clusters of centromeres, rRNA genes and procyclins became apparent. With respect to antigenic variation, Hi-C revealed a striking compaction of the subtelomeric VSG gene repertoire and a strong clustering of transcriptionally repressed VSG-containing expression sites. Further, Hi-C analyses confirmed the spatial separation of the actively transcribed from the silenced expression sites in three dimensions. I further sought to characterize architectural proteins mediating nuclear architecture in T. brucei. Whereas CTCF is absent in non-metazoans, we found cohesin to be expressed throughout the cell cycle, emphasizing a function beyond sister chromatid cohesion in S-phase. By Chromatin-Immunoprecipitation with sequencing (ChIPseq), I found cohesin enrichment to coincide with the presence of histone H3 vari- ant (H3.V) and H4 variant (H4.V). Most importantly, cohesin and the histone variants were enriched towards the VSG gene at silent and active expression sites. While the deletion of H3.V led to increased clustering of expression sites in three dimensions and increased chromatin accessibility at expression site promoters, the additional deletion of H4.V increased chromatin accessibility at expression sits even further. RNAseq showed that mutually exclusive VSG expression was lost in H3.V and H4.V single and double deletion mutants. Immunofluorescence imaging of surface VSGs, flow cytometry and single-cell RNAseq revealed a progressive loss of VSG-2 expression, indicative of an increase in VSG switching rate in the H3.V/H4.V double deletion mutants. Using long-read sequencing technology, we found that VSG switching occurred via recombination and concluded, that the concomitant increase in spatial proximity and accessibility among expression sites facilitated the recombination event. I therefore identified the histone variants H3.V and H4.V to act at the interface of global nuclear architecture and chromatin accessibility and to represent a link between genome architecture and antigenic variation. N2 - Antigenvariation ist ein weit verbreiteter Mechanismus der Immunevasion von Pathogenen [63]. Sie beruht auf der transkriptionellen Selektion eines einzelnen Gens aus einer hypervariablen Multi-Gen Familie und dem wiederholten, systematischen Wechsel zwischen der Expression verschiedener Gene dieser Familie. In vielen Organismen sind diese Gene als Kontingenzgene in den Subtelomeren angeordnet, wo sind einerseits transkriptionell reprimiert werden, andererseits erhöhter Mutagenese und Rekombination unterliegen [16]. Monoallelische Exklusion eines Gens und die damit einhergehende Eviktion aus seinem reprimierten genomischen Umfeld beruht auf unterschiedlichen molekularen Mechanismen. Sie ist, zum Beispiel, das Resultat einer Rekombination des betreffenden Gens in einen dedizierten, transkriptionell permissiven Lokus oder wird durch epigenetische, bzw. räumliche Umstrukturierung des entsprechenden Gens oder zugrunde liegenden Chromatins erreicht. Beide Prozesse sind letztendlich durch die Architektur des Genoms beeinflusst. Architekturelle Proteine, die ebenfalls Antigenvariation kontrollieren, sind in vielen Pathogenen unbekannt. Der parasitäre Protozoe Trypanosoma brucei entkommt einer Elimination durch die Immunabwehr seines Wirtes durch den periodischen Wechsel in der Expression eines von fast 3000 variablen Oberflächenglykoproteinen (VSGs). VSG-Gene umfassen die größte, monoallelisch exprimierte Genfamilie, die bislang beschrieben wurde. Um exprimiert zu werden, muss das selektierte VSG Gen in eine Expressionsseite transloziert sein. Diese wiederum wird in einem dedizierten Kompartment des Zellkerns, dem Expressionsseiten-Zellkernkörper (ESB), transkribiert. Obgleich diese Gegebenheiten die zentrale Rolle der Zellkernarchitektur in der Antigenvariation in T. brucei verdeutlichen, so ist wenig über die ihr zugrundeliegenden Mechanismen bekannt. Um ein umfassendes Bild der Zellkernarchitektur in Trypanosomen zu bekommen, habe ich in der hier vorliegenden Doktorarbeit Hi-C, eine Methode zur Feststellung chromosomaler Konformationen, in T. brucei Blutstromform und Prozyklen etabliert und angewendet. Die Applikation dieser Technik offenbarte einen hoch strukturierten Zellkern: Chromosome sind territorial angeordnet und gehen spezifische Interaktionen in trans untereinander ein. Dies sind beispielsweise Interaktionen zwischen Zentromeren, Genen für ribosomale RNA und Prozyklinen unterschiedlicher Chromosomen. Auch Interaktionen, die in funktionellem Zusammenhang mit Antigenvariation stehen, wurden gefunden. Dabei handelte es sich zum Einen um strukturelle Verdichtungen des subtelomerischen Chromatins transkriptionell reprimierter VSG Gene und zum Anderen um erhöhte Interaktionen zwischen reprimierten VSG-Expressionsseiten. Hi-C bestätigte außerdem die räumliche Separation der aktiv transkribierten Expressionsseite von den übrigen, stillen VSG-Expressionsseiten. Des Weiteren suchte ich nach Proteinen, die in der Aufrechterhaltung der Zellkernarchitektur in T. brucei wirken. Anders als CTCF ist Cohesin nicht auf Metazoen beschränkt. Ich fand Cohesin über den gesamten Zellzyklus exprimiert, was eine architekturelle Rolle des Proteinkomplexes zuzüglich der Schwesterchromatidkohäsion suggerierte. Mittels Chromatin-Immunpräzipitation konnte ich feststellen, dass Cohesin mit den Histonvarianten H3.V und H4.V an vielen Stellen des Ge- noms kolokalisierte, insbesondere über dem VSG Gen der aktiven und reprimierten Expressionsseiten. Während eine Deletion von H3.V zu erhöhten Interaktionsfrequenzen zwischen Expressionsseiten führte, resultierte eine gleichzeitige Deletion von H3.V und H4.V zu einer additiven Öffnung des Chromatins an Expressionsseiten. RNA Sequenzierungen ergaben, dass in der H3.V/H4.V Doppeldeletionsmutante die Transcription von VSG Genen erhöht war, was auf einen funktionellen Verlust der monoallelischen Expression hindeutete. Immunfluoreszenzaufnahmen der VSGs auf der Zelloberfläche, Durchflusszytometrie und RNA Sequenzierung einzelner Zellen zeigten einen fortschreitenden Verlust der Expression von VSG-2, was auf einen erhöhten Wechsel der VSG-Expression auf dem Einzelzelllevel hindeutete. Durch die Sequenzierung der genomischen DNA der H3.V/H4.V Doppeldeletionsmutante konnten wir feststellen, dass der primäre Mechanismus des Wechsels in der VSG Expression auf eine Rekombination zwischen Expressionsseiten zurückzuführen war. Diese Rekombination wurde vermutlich durch die gesteigerte räumliche Nähe und Öffnung des Chromatins der Expressionsseiten begünstigt. Zusammenfassend konnte ich feststellen, dass die Histonvarianten H3.V und H4.V auf der Schnittstelle zwischen globaler Zellkernarchitektur und lokaler Chromatinzugänglichkeit agieren und funktionell ein molekulares Verbindungsstück zwischen Genomarchitektur und Antigenvariation darstellen. KW - Trypanosoma brucei brucei KW - Zellkern KW - Histone KW - DNS KW - Zellkernarchitektur KW - Hi-C KW - nuclear architecture KW - parasitology KW - histone variants KW - antigenic variation KW - mutually exclusive expression KW - chromosome conformation capture KW - variant surface glycoprotein KW - VSG Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-187074 ER - TY - THES A1 - Hofstetter, Christine T1 - Inhibition of H3K27me-Specific Demethylase Activity During Murine ES cell Differentiation Induces DNA Damage Response T1 - Inhibierung der H3K27me-Spezifischen Demethylase Aktivität in Murin Differenzierenden ES Zellen Induziert die DNA Schadensantwort N2 - Stem cells are defined by their capacity to self-renew and their potential to differentiate into multiple cell lineages. Pluripotent embryonic stem (ES) cells can renew indefinitely while keeping the potential to differentiate into any of the three germ layers (ectoderm, endoderm or mesoderm). For decades, ES cells are in the focus of research because of these unique features. When ES cells differentiate they form spheroid aggregates termed “embryoid bodies” (EBs). These EBs mimic post- implantation embryonic development and therefore facilitate the understanding of developmented mechanisms. During ES cell differentiation, de-repression or repression of genes accompanies the changes in chromatin structure. In ES cells, several mechanisms are involved in the regulation of the chromatin architecture, including post-translational modifications of histones. Post-translational histone methylation marks became one of the best- investigated epigenetic modifications, and they are essential for maintaining pluripotency. Until the first histone demethylase KDM1A was discovered in 2004 histone modifications were considered to be irreversible. Since then, a great number of histone demethylases have been identified. Their activity is linked to gene regulation as well as to stem cell self-renewal and differentiation. KDM6A and KDM6B are H3K27me3/2-specific histone demethylases, which are known to play a central role in the regulation of posterior development by regulating HOX gene expression. So far less is known about the molecular function of KDM6A or KDM6B in undifferentiated and differentiating ES cells. In order to completely abrogate KDM6A and KDM6B demethylase activity in undifferentiated and differentiating ES cells, a specific inhibitor (GSK-J4) was employed. Treatment with GSK-J4 had no effect on the viability or proliferation on ES cells. However, in the presence of GSK-J4 ES cell differentiation was completely abrogated with cells arrested in G1-phase and an increased rate of apoptosis. Global transcriptome analyses in early-differentiating ES cells revealed that only a limited set of genes were differentially regulated in response to GSK-J4 treatment with more genes up- regulated than down-regulated. Many of the up-regulated genes are linked to DNA damage response (DDR). In agreement with this, DNA damage was found in EBs incubated with GSK-J4. A co-localization of H3K27me3 or KDM6B with γH2AX foci, marking DNA breaks, could be excluded. However, differentiating Eed knockout (KO) ES cells, which are devoid of the H3K27me3 mark, showed an attenuated GSK-J4- induced DDR. Finally, hematopoietic differentiation in the presence of GSK-J4 resulted in a reduced colony-forming potential. This leads to the conclusion that differentiation in the presence of GSK-J4 is also restricted to hematopoietic differentiation. In conclusion, my results show that the enzymatic activity of KDM6A and KDM6B is not essential for maintaining the pluripotent state of ES cells. In contrast, the enzymatic activity of both proteins is indispensable for ES cell and hematopoietic differentiation. Additionally KDM6A and KDM6B enzymatic inhibition in differentiating ES cells leads to increased DNA damage with an activated DDR. Therefore, KDM6A and KDM6B are associated with DNA damage and in DDR in differentiating ES cells. N2 - Stammzellen sind definiert durch ihre Fähigkeit zur Selbsterneuerung und dem Potential in multiple Zellinien zu differenzieren. Pluripotente embryonale Stammzellen (ES Zellen) können sich fortlaufend erneuern und besitzen zudem das Potential, in alle drei Keimblätter (Ektoderm, Endoderm oder Mesoderm) zu differenzieren. Auf Grund dieser einzigartigen Eigenschaften sind ES Zellen seit Jahrzehnten im Focus der Wissenschaft. Wenn ES Zellen differenzieren, sind sie in der Lage, sphäroid-förmige Aggregate zu bilden, welche als embryoide Körperchen (EBs) bezeichnet werden. In EBs finden sich Zellen aller 3 Keimblätter und daher dienen sie als in vitro Modell für frühe embryonale Entwicklung. Während der ES Zell Differenzierung verändert die De-repression oder Repression von Genen die Struktur des Chromatins. ES Zellen besitzen eine Vielzahl von Mechanismen, die mit der Regulation des Chromatins assoziiert sind, einschließlich post-translationale Modifikationen an Histonen. Post-translationale Histon- methylierung gehören zu den am häufigsten untersuchten epigenetischen Modifikationen und spielen z.B. ein wichtige Rolle bei der Aufrechterhaltung der Pluripotenz. Bis zur Entdeckung der ersten Histon-Demethylase KDM1A im Jahre 2004 glaubte man, dass Modifikationen an Histonen irreversible sind. Bislang wurden jedoch eine Vielzahl an Histon-Demethylasen identifiziert, welche mit der Genregulation, sowie der Selbsterneuerung und Differenzierung von Stammzelle in Verbindung gebracht werden konnten. KDM6A und KDM6B sind H3K27me3/2-spezifische Histon-Demethylasen, welche bei der posterioren Entwicklung durch Regulation der Hox Gene eine wichtige Rolle spielen. Bislang ist über die molekulare Funktion von KDM6A und KDM6B in nicht differenzierten und differenzierenden ES Zellen wenig bekannt. Um die KDM6A und KDM6B Demethylase Aktivität in nicht differenzierten und differenzierenden ES Zellen außer Kraft zu setzten kam ein spezifischer Inhibitor (GSK-J4) zum Einsatz. Die Behandlung mit GSK-J4 zeigte keine Auswirkungen auf die Viabilität oder Proliferation von nicht differenzierten ES Zellen. Jedoch war die Differenzierung von ES Zellen in Gegenwart von GSK-J4 inhibiert und zeigte einen erhöhten G1-Phase Arrest sowie eine erhöhte Rate an apoptotischen Zellen. Eine globale Transkriptionsanalyse in frühen differenzierenden ES Zellen, in Gegenwart von GSK- J4 zeigte, dass lediglich eine relativ geringe Zahl von Genen differenziell reguliert war. Dabei waren mehr Gene hochreguliert als herunterreguliert. Viele der hochregulierten Gene konnten mit der DNA Schadensantwort in Verbindung gebracht werden. In Übereinstimmung damit konnte in Gegenwart von GSK-J4 in differenzierenden ES Zellen DNA Schaden nachgewiesen werden. Eine Kolokalisation von H3K27me3 oder KDM6B mit γH2AX markierten Foci, welche DNA Schaden markieren, konnte nicht nachgewiesen werden. Nichts desto trotz zeigten GSK-J4 behandelte, differenzierende Eed KO ES Zellen, welche keine H3K27me3 Modifikation besitzen, eine abgemilderte DNA Schadensantwort. In Anwesenheit von GSK-J4 konnte während der hämatopoetischen Differenzierung eine reduzierte Kolonie-Bildung beobachtet werden. Daraus lässt sich schließen, dass in Anwesenheit von GSK-J4 ebenfalls auch die hämatopoetische Differenzierung inhibiert wird. Zusammenfassend zeigen meine Ergebnisse, dass die enzymatische Aktivität von KDM6A und KDM6B für die Aufrechterhaltung des pluripotenten Zustands nicht essenziell ist. Im Gegensatz dazu ist die enzymatische Aktivität von beiden Proteinen unabdingbar für die ES Zell sowie die hämatopoetische Differenzierung. Die enzymatische Inhibierung von KDM6A und KDM6B führt während der Differenzierung zu einem erhöhten DNA Schaden, wodurch die DNA Schadensantwort aktiviert wird. Somit sind KDM6A und KDM6B mit DNA Schaden und der DNA Schadensantwort assoziiert. KW - Embryonale Stammzelle KW - Epigenetic KW - Maus KW - Histone KW - Demethylierung KW - DNS-Schädigung KW - Epigenetik Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-107023 ER -