TY - THES A1 - Körber, Simon Erhard T1 - Correlated Topological Responses In Dynamical Synthetic Quantum Matter T1 - Korrelierte topologische Antwortsignale in dynamischer synthetischer Quantenmaterie N2 - The last years have witnessed an exciting scientific quest for intriguing topological phenomena in time-dependent quantum systems. A key to many manifestations of topology in dynamical systems relies on the effective dimensional extension by time-periodic drives. An archetypal example is provided by the Thouless pump in one spatial dimension, where a robust and quantized charge transport can be described in terms of an integer quantum Hall effect upon interpreting time as an extra dimension. Generalizing this fundamental concept to multifrequency driving, a variety of higher-dimensional topological models can be engineered in dynamical synthetic dimensions, where the underlying topological classification leads to quantized pumping effects in the associated lower-dimensional time-dependent systems. In this Thesis, we explore how correlations profoundly impact the topological features of dynamical synthetic quantum materials. More precisely, we demonstrate that the interplay of interaction and dynamical synthetic dimension gives rise to striking topological phenomena that go beyond noninteracting implementations. As a starting point, we exploit the Floquet counterpart of an integer quantum Hall scenario, namely a two-level system driven by two incommensurate frequencies. In this model, the topologically quantized response translates into a process in which photons of different frequencies are exchanged between the external modes, referred to as topological frequency conversion. We extend this prototypical setup to an interacting version, focusing on the minimal case of two correlated spins equally exposed to the external drives. We show that the topological invariant determining the frequency conversion can be changed by odd integers, something explicitly forbidden in the noninteracting limit of two identical spins. This correlated topological feature may, in turn, result in an enhancement of the quantized response. Robust response signals, such as those predicted for the topological frequency converter, are of fundamental interest for potential technological applications of topological quantum matter. Based on an open quantum system implementation of the frequency converter, we propose a novel mechanism of topological quantization coined ''topological burning glass effect''. Remarkably, this mechanism amplifies the local response of the driven two-level system by an integer that is proportional to the number of environmental degrees of freedom to which the system is strongly coupled. Specifically, our findings are illustrated by the extension of the frequency converter to a central spin model. There, the local energy transfer mediated exclusively by the central spin is significantly enhanced by the collective motion of the surrounding spins. In this sense, the central spin adopts the topological nature of the total system in its non-unitary dynamics, taking into account the correlations with the environment. N2 - In den letzten Jahren hat sich eine spannende Suche nach faszinierenden topologischen Phänomenen in zeitabhängigen Quantensystemen entwickelt. Ein Schlüssel zu zahlreichen Ausprägungen der Topologie in dynamischen Systemen beruht auf der effektiven Dimensionserweiterung durch zeitlich-periodische Antriebe. Ein Beispiel ist die Thouless-Pumpe in einer räumlichen Dimension, in der ein robuster und quantisierter Ladungstransport mittels eines Quanten-Hall-Effekts beschrieben werden kann, sofern Zeit als zusätzliche Dimension interpretiert wird. Durch Verallgemeinerung dieses Grundkonzepts auf Multifrequenzantriebe kann eine Vielzahl höherdimensionaler topologischer Modelle in zeitlich synthetischen Dimensionen konstruiert werden, bei denen die zugrunde liegende topologische Klassifikation zu quantisierten Pumpeffekten in den zugehörigen niederdimensionalen zeitabhängigen Systemen führt. In dieser Dissertation wird untersucht, wie Korrelationen die topologischen Eigenschaften von zeitlich synthetischen Quantenmaterialen maßgeblich beeinflussen. Konkret wird gezeigt, dass das Zusammenspiel von Wechselwirkung und zeitlicher synthetischer Dimension zu erstaunlichen topologischen Phänomenen führt, die über nicht-wechselwirkende Realisierungen hinausgehen. Als Ausgangspunkt wird das Floquet-Gegenstück eines Quanten-Hall-Szenarios genutzt, ein Zwei-Niveau-System, das von zwei inkommensurablen Frequenzen getrieben wird. In diesem Modell spiegelt sich die topologisch quantisierte Antwort in einen Prozess wider, bei dem Photonen verschiedener Frequenzen zwischen den externen Moden ausgetauscht werden, auch bekannt als topologische Frequenzumwandlung. Wir erweitern dieses prototypische Setup auf eine interagierende Version, indem wir uns auf den Minimalfall zweier korrelierter Spins konzentrieren, die gleichermaßen den externen Antrieben ausgesetzt sind. Wir zeigen, dass die topologische Invariante, die die Frequenzumwandlung bestimmt, durch ungerade ganze Zahlen verändert werden kann. Ein Zustand, der im nicht-wechselwirkenden Fall ausdrücklich verboten ist. Dieses korrelierte topologische Verhalten kann wiederum zu einer Verstärkung der quantisierten Antwort führen. Robuste Antwortsignale, wie sie für den topologischen Frequenzumwandler vorhergesagt werden, sind von grundlegendem Interesse für potentielle technologische Anwendungen der topologischen Quantenmaterie. Basierend auf einer offenen Quantensystem-Realisierung des Frequenzumwandlers schlagen wir einen neuartigen Mechanismus der topologischen Quantisierung vor, den wir als ''topologischen Brennglaseffekt'' bezeichnen. Dieser Mechanismus verstärkt die lokale Antwort des getriebenen Zwei-Niveau-Systems um eine ganze Zahl, die proportional zur Anzahl der Freiheitsgrade der Umgebung ist, an die das System koppelt. Konkret werden unsere Erkenntnisse durch die Erweiterung des Frequenzumwandlers auf ein Zentralspinmodell veranschaulicht. Der lokale Energietransfer, der ausschließlich durch den zentralen Spin vermittelt wird, wird durch die kollektive Bewegung der umgebenden Spins maßgeblich verstärkt. In diesem Sinne erbt der Zentralspin die topologische Natur des Gesamtsystems in seiner nicht-unitären Dynamik, die die Korrelationen mit der Umgebung berücksichtigt. KW - Floquet-Theorie KW - Topologische Phase KW - Quanten-Hall-Effekt KW - Quantenspinsystem KW - Elektronenkorrelation KW - Topological Pumping KW - Adiabatic Perturbation Theory KW - Bloch-Floquet Theorem KW - Open Quantum System KW - Correlation Effects Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-316717 ER - TY - THES A1 - Klett, Michael T1 - Auxiliary particle approach for strongly correlated electrons : How interaction shapes order T1 - Hilfsteilchen-Projektion stark korrelierter Elektronensysteme N2 - Since the genesis of condensed matter physics, strongly correlated fermionic systems have shown a variety of fascinating properties and remain a vital topic in the field. Such systems arise through electronic interaction, and despite decades of intensive research, no holistic approach to solving this problem has been found. During that time, physicists have compiled a wealth of individual experimental and theoretical results, which together give an invaluable insight into these materials, and, in some instances, can explain correlated phenomena. However, there are several systems that stubbornly refuse to fall completely in line with current theoretical descriptions, among them the high-\( T_c{}\) cuprates and heavy fermion compounds. Although the two material classes have been around for the better part of the last 50 years, large portions of their respective phase diagram are still under intensive debate. Recent experiments in several electron-doped cuprates compounds, e.g. neodymium cerium copper oxide (Nd\(_{2x}\)Ce\(_x\)CuO\(_4\)), reveal a charge ordering about an antiferromagnetic ground state. So far, it has not been conclusively clarified how this intertwining of charge and spin polarization comes about and how it can be reconciled with a rigorous theoretical description. The heavy-fermion semimetals, on the other hand, have enjoyed renewed scientific interest with the discovery of topological Kondo insulators, a new material class offering a unique interface of topology, symmetry breaking, and correlated phenomena. In this context, samarium hexaboride (SmB\(_6\)) has emerged as a prototypical system, which may feature a topological ground state. In this thesis, we present a spin rotational invariant auxiliary particle approach to investigate the propensities of interacting electrons towards forming new states of order. In particular, we study the onset of spin and charge order in high-\( T_c{}\) cuprate systems and Kondo lattices, as well as the interplay of magnetism and topology. To that end, we use a sophisticated mean-field approximation of bosonic auxiliary particles augmented by a stability analysis of the saddle point via Gaussian fluctuations. The latter enables the derivation of dynamic susceptibilities, which describe the response of the system under external fields and offer a direct comparison to experiments. Both the mean-field and fluctuation formalisms require a numerical tool that is capable of extremizing the saddle point equations, on the one hand, and reliably solving a loop integral of the susceptibility-type, on the other. A full, from scratch derivation of the formalism tailored towards a software implementation, is provided and pedagogically reviewed. The auxiliary particle method allows for a rigorous description of incommensurate magnetic order and compares well to other established numerical and analytical techniques. Within our analysis, we employ the two-dimensional one-band Hubbard as well as the periodic Anderson model as minimal Hamiltonians for the high-\( T_c{}\) cuprates and Kondo systems, respectively. For the former, we observe a regime of intertwined charge- and spin-order in the electron-doped regime, which matches recent experimental observations in the cuprate material Nd\(_{2x}\)Ce\(_x\)CuO\(_4\). Furthermore, we localize the emergence of a Kondo regime in the periodic Anderson model and establish the magnetic phase diagram of the two-band model for topological Kondo insulators. The emerging antiferromagnetic ground state can be characterized by its topological properties and shows, for a non-trivial phase, topologically protected hinge modes. N2 - Stark korrelierte Fermionen in einem Festkörper-Kristallgitter weisen eine Vielzahl faszinierender kollektiver Eigenschaften auf und stellen damit eines der konzeptionell reichhaltigsten Themenkomplexe auf dem Gebiet der Physik der kondensierten Materie da. Die dazu nötigen Mechanismen lassen sich auf die elektronische Coulomb-Wechsel-wirkung zurückführen und sind trotz jahrzehntelanger intensiver Forschung bis heute nicht geschlossen gelöst worden. Vielmehr wurden - Stück für Stück - experimentelle und theoretische Einzelergebnisse zusammen getragen, die nicht nur einen tiefen Einblick in diese Materialien geben, sondern in einigen Fällen sogar korrelierte Phänomene erklären können. Allerdings gibt es durchaus Strukturen, die sich hartnäckig weigern, mit den bisherigen theoretischen Beschreibungen vollständig übereinzustimmen, darunter die Kuprat-Hochtemperatursupraleiter und die Schwer-Fermionenverbindungen. Obwohl diese beiden Materialklassen seit etwa 50 Jahren erforscht werden, sind große Teile ihrer jeweiligen Phasendiagramme noch nicht abschließend entschlüsselt. Experimente an mehreren elektronendotierten Kuprat-verbindungen, z. B. Neodym-Cerium-Kupferoxid (Nd\(_{2x}\)Ce\(_x\)CuO\(_4\)), zeigen unter anderem eine Ladungsdichtewelle, die auf einem antiferromagnetischen Grundzustand beruht. Bislang ist nicht abschließend geklärt, wie diese Verschränkung von Ladungs- und Spinpolarisation zustande kommt und wie sie mit einer strengen theoretischen Beschreibung in Einklang zu bringen ist. Schwer-Fermionen Halbmetalle erleben mit der Entdeckung der topologischen Kondo-Isolatoren eine Renaissance und bieten eine einzigartige Schnittstelle zwischen Topologie, Symmetriebrechung und korrelierten Phänomenen. Der wahrscheinlich vielversprechendste Kandidat dieser neuen Materialklasse ist Samariumhexaborid (SmB\(_6\)). In dieser Arbeit nutzen wir einen spinrotationsinvarianten Hilfsteilchenansatz um die Emergenz neuer Ordnungszustände wechselwirkender Elektronen zu untersuchen. Im Besonderen interessiert uns das Zusammenspiel von Spin- und Ladungsdichtewellen in den Hochtemperatur Kupraten und Kondo-systemen, sowie die Interaktion von Magnetismus und Topologie. Dazu verwenden wir eine hoch parametrische Molekular-Feld-Analyse der bosonischen Hilfsteilchen, die anschließend durch eine Stabilitätsanalyse des Sattelpunkts ergänzt wird. Sowohl die Molekular-Feld-Approximation, als auch der Fluktuations-Formalismus erfordern ein numerisches Softwaretool, das in der Lage ist sowohl Sattelpunkt-Gleichungen als auch Loopintegral präzise zu lösen. Wir präsentieren eine pädagogisch aufgearbeitete, von Grund auf entwickelte Herleitung des Formalismus, die auf eine Software-Implementierung zugeschnitten ist. Der Hilfsteilchenansatz erlaubt überdies eine rigorose Beschreibung inkommensurabel magnetischer Ordnungen und reproduziert etablierten numerischen und analytische Ergebnisse in guter Übereinstimmung. Für unsere Analyse verwenden wir sowohl das zweidimensionale Einband-Hubbard- als auch das periodische Anderson-Modell als minimalen Hamitonian für die Hochtemperatur-Kuprate bzw. Kondo-Systeme. Im Falle der Kuprate finden wir eine Phase, die durch eine kombinierte Ladungs- und Spinordnung im elektronendotierten Parameterbereich gekennzeichnet ist und überdies gut mit experimentellen Beobachtungen im Kupratmaterial Nd\(_{2x}\)Ce\(_x\)CuO\(_4\) übereinstimmt. Des Weitern wird das Auftreten des Kondo-Regimes im periodischen Anderson-Modell untersucht und das magnetische Phasendiagramm des Zwei-Band-Hamiltonians eines topologischen Kondo-Isolators kartiert. Der antiferromagnetische Grundzustand kann durch eine topologische Invariante charakterisiert werden und zeigt für eine nicht-triviale Phase eindimensionale topologisch geschützte Kantenmoden. KW - Festkörpertheorie KW - Slave-Boson-Verfahren KW - Hochtemperatursupraleiter KW - Kondo-System KW - Topologische Phase KW - Mean-Field-Methode Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-248121 ER - TY - THES A1 - Lundt, Felix Janosch Peter T1 - Superconducting Hybrids at the Quantum Spin Hall Edge T1 - Supraleitende Hybrid-Strukturen auf Basis von Quanten-Spin-Hall-Randzuständen N2 - This Thesis explores hybrid structures on the basis of quantum spin Hall insulators, and in particular the interplay of their edge states and superconducting and magnetic order. Quantum spin Hall insulators are one example of topological condensed matter systems, where the topology of the bulk bands is the key for the understanding of their physical properties. A remarkable consequence is the appearance of states at the boundary of the system, a phenomenon coined bulk-boundary correspondence. In the case of the two-dimensional quantum spin Hall insulator, this is manifested by so-called helical edge states of counter-propagating electrons with opposite spins. They hold great promise, \emph{e.g.}, for applications in spintronics -- a paradigm for the transmission and manipulation of information based on spin instead of charge -- and as a basis for quantum computers. The beginning of the Thesis consists of an introduction to one-dimensional topological superconductors, which illustrates basic concepts and ideas. In particular, this includes the topological distinction of phases and the accompanying appearance of Majorana modes at their ends. Owing to their topological origin, Majorana modes potentially are essential building-blocks for topological quantum computation, since they can be exploited for protected operations on quantum bits. The helical edge states of quantum spin Hall insulators in conjunction with $s$-wave superconductivity and magnetism are a suitable candidate for the realization of a one-dimensional topological superconductor. Consequently, this Thesis investigates the conditions in which Majorana modes can appear. Typically, this happens between regions subjected to either only superconductivity, or to both superconductivity and magnetism. If more than one superconductor is present, the phase difference is of paramount importance, and can even be used to manipulate and move Majorana modes. Furthermore, the Thesis addresses the effects of the helical edge states on the anomalous correlation functions characterizing proximity-induced superconductivity. It is found that helicity and magnetism profoundly enrich their physical structure and lead to unconventional, exotic pairing amplitudes. Strikingly, the nonlocal correlation functions can be connected to the Majorana bound states within the system. Finally, a possible thermoelectric device on the basis of hybrid systems at the quantum spin Hall edge is discussed. It utilizes the peculiar properties of the proximity-induced superconductivity in order to create spin-polarized Cooper pairs from a temperature bias. Cooper pairs with finite net spin are the cornerstone of superconducting spintronics and offer tremendous potential for efficient information technologies. N2 - Diese Dissertation behandelt Strukturen auf der Grundlage von Quanten-Spin-Hall-Isolatoren, in denen deren Randzustände mit supraleitender und magnetischer Ordnung in Verbindung gebracht werden. Quanten-Spin-Hall-Isolatoren sind Beispiele für Systeme in der Festkörperphysik, deren physikalische Eigenschaften auf die topologische Struktur der Energiebänder zurückzuführen sind. Eine bemerkenswerte Konsequenz daraus ist die Entstehung von besonderen Randzuständen an der Oberfläche. Im Fall der zweidimensionalen Quanten-Spin-Hall-Isolatoren sind diese eindimensional und bestehen aus leitenden, metallischen Zuständen von gegenläufigen Elektronen mit entgegengesetztem Spin -- sogenannte helikale Randzustände. Sie bergen großes Potenzial für Anwendungen in der Spintronik, bei der Informationen nicht durch die Ladung, sondern den Spin von Elektronen übertragen werden, und als Plattform für Quantencomputer. Am Beginn der Dissertation werden eindimensionale topologische Supraleiter allgemeiner besprochen. Ausgehend von der Kitaev-Kette und einem kontinuierlichen Modell werden grundlegende Konzepte anschaulich eingeführt, insbesondere im Hinblick auf die topologische Unterscheidung von trivialer und nicht-trivialer Phase und dem Auftreten von Majorana-Zuständen an deren Enden. Letztere sind die entscheidenden Bausteine auf dem Weg zu geschützten Operationen für Quanten-Bits. Da Randzustände von Quanten-Spin-Hall-Isolatoren im Zusammenspiel mit $s$-Wellen-Supraleitung und Magnetismus eine Möglichkeit für die Realisierung eines solchen eindimensionalen topologischen Supraleiters ist, wird in der Folge untersucht, unter welchen Bedingungen Majorana-Zustände auftreten können. Es wird gezeigt, dass dies zwischen Gebieten geschieht, in denen die Randzustände entweder nur von Supraleitung oder von Supraleitung und Magnetismus beeinflusst werden. In Systemen mit mehr als einer supraleitenden Region spielt die Phasendifferenz dabei eine übergeordnete Rolle und kann sogar dazu benutzt werden, Majorana-Zustände zu manipulieren. Weiterhin behandelt die Dissertation die Auswirkungen der helikalen Randzustände auf anomale Korrelationsfunktionen, die von der Supraleitung induziert werden. Es zeigt sich, dass Helizität und Magnetismus deren Eigenschaften bereichern können und unkonventionelle, exotische Paarungs-Mechanismen auftreten. Zusätzlich wird ein Zusammenhang zu Majorana-Zuständen demonstriert. Abschließend wird eine mögliche thermoelektrische Anwendung eines hybriden Systems besprochen, die die besonderen supraleitenden Eigenschaften ausnutzt, um eine Temperaturdifferenz zur Erzeugung von Cooper-Paaren mit Spin-Polarisierung zu verwenden. Diese stellen im Rahmen der supraleitenden Spintronik vielversprechende Einheiten zur verlustarmen Übertragung von Informationen dar. KW - Mesoskopisches System KW - Kondensierte Materie KW - Theoretische Physik KW - Topologische Phase KW - Supraleitung KW - Quantum Spin Hall Effect KW - Topological Superconductivity KW - Majorana fermions KW - Topological Quantum Computing KW - Thermoelectricity Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-216421 ER -