TY - JOUR A1 - Seidlmayer, Lea K. A1 - Mages, Christine A1 - Berbner, Annette A1 - Eder-Negrin, Petra A1 - Arias-Loza, Paula Anahi A1 - Kaspar, Mathias A1 - Song, Moshi A1 - Dorn, Gerald W. A1 - Kohlhaas, Michael A1 - Frantz, Stefan A1 - Maack, Christoph A1 - Gerull, Brenda A1 - Dedkova, Elena N. T1 - Mitofusin 2 is essential for IP3-mediated SR/Mitochondria metabolic feedback in ventricular myocytes JF - Frontiers in Physiology N2 - Aim: Endothelin-1 (ET-1) and angiotensin II (Ang II) are multifunctional peptide hormones that regulate the function of the cardiovascular and renal systems. Both hormones increase the intracellular production of inositol-1,4,5-trisphosphate (IP\(_3\)) by activating their membrane-bound receptors. We have previously demonstrated that IP\(_3\)-mediated sarcoplasmic reticulum (SR) Ca\(^{2+}\) release results in mitochondrial Ca\(^{2+}\) uptake and activation of ATP production. In this study, we tested the hypothesis that intact SR/mitochondria microdomains are required for metabolic IP\(_3\)-mediated SR/mitochondrial feedback in ventricular myocytes. Methods: As a model for disrupted mitochondrial/SR microdomains, cardio-specific tamoxifen-inducible mitofusin 2 (Mfn2) knock out (KO) mice were used. Mitochondrial Ca\(^{2+}\) uptake, membrane potential, redox state, and ATP generation were monitored in freshly isolated ventricular myocytes from Mfn2 KO mice and their control wild-type (WT) littermates. Results: Stimulation of ET-1 receptors in healthy control myocytes increases mitochondrial Ca\(^{2+}\) uptake, maintains mitochondrial membrane potential and redox balance leading to the enhanced ATP generation. Mitochondrial Ca\(^{2+}\) uptake upon ET-1 stimulation was significantly higher in interfibrillar (IFM) and perinuclear (PNM) mitochondria compared to subsarcolemmal mitochondria (SSM) in WT myocytes. Mfn2 KO completely abolished mitochondrial Ca\(^{2+}\) uptake in IFM and PNM mitochondria but not in SSM. However, mitochondrial Ca2+ uptake induced by beta-adrenergic receptors activation with isoproterenol (ISO) was highest in SSM, intermediate in IFM, and smallest in PNM regions. Furthermore, Mfn2 KO did not affect ISO-induced mitochondrial Ca\(^{2+}\) uptake in SSM and IFM mitochondria; however, enhanced mitochondrial Ca\(^{2+}\) uptake in PNM. In contrast to ET-1, ISO induced a decrease in ATP levels in WT myocytes. Mfn2 KO abolished ATP generation upon ET-1 stimulation but increased ATP levels upon ISO application with highest levels observed in PNM regions. Conclusion: When the physical link between SR and mitochondria by Mfn2 was disrupted, the SR/mitochondrial metabolic feedback mechanism was impaired resulting in the inability of the IP\(_3\)-mediated SR Ca\(^{2+}\) release to induce ATP production in ventricular myocytes from Mfn2 KO mice. Furthermore, we revealed the difference in Mfn2-mediated SR-mitochondrial communication depending on mitochondrial location and type of communication (IP\(_3\)R-mRyR1 vs. ryanodine receptor type 2-mitochondrial calcium uniporter). KW - mitofusin 2 KW - IP3 KW - SR/mitochondria metabolic feedback KW - mitochondrial mRyR1 KW - ATP generation KW - endothelin-1 KW - Mfn2 KO mice Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-199141 SN - 1664-042X VL - 10 IS - 733 ER - TY - JOUR A1 - Fluri, Felix A1 - Schuhmann, Michael K A1 - Kleinschnitz, Christoph T1 - Animal models of ischemic stroke and their application in clinical research JF - Drug Design, Development and Therapy N2 - This review outlines the most frequently used rodent stroke models and discusses their strengths and shortcomings. Mimicking all aspects of human stroke in one animal model is not feasible because ischemic stroke in humans is a heterogeneous disorder with a complex pathophysiology. The transient or permanent middle cerebral artery occlusion (MCAo) model is one of the models that most closely simulate human ischemic stroke. Furthermore, this model is characterized by reliable and well-reproducible infarcts. Therefore, the MCAo model has been involved in the majority of studies that address pathophysiological processes or neuroprotective agents. Another model uses thromboembolic clots and thus is more convenient for investigating thrombolytic agents and pathophysiological processes after thrombolysis. However, for many reasons, preclinical stroke research has a low translational success rate. One factor might be the choice of stroke model. Whereas the therapeutic responsiveness of permanent focal stroke in humans declines significantly within 3 hours after stroke onset, the therapeutic window in animal models with prompt reperfusion is up to 12 hours, resulting in a much longer action time of the investigated agent. Another major problem of animal stroke models is that studies are mostly conducted in young animals without any comorbidity. These models differ from human stroke, which particularly affects elderly people who have various cerebrovascular risk factors. Choosing the most appropriate stroke model and optimizing the study design of preclinical trials might increase the translational potential of animal stroke models. KW - permanent and transient middle cerebral artery occlusion KW - thromboembolic clot model KW - mouse KW - rat KW - microsphere/macrosphere KW - endothelin-1 KW - photothrombosis KW - thromboembolic stroke Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-149157 VL - 9 ER -