TY - JOUR A1 - Banicka, Veronika A1 - Martens, Marie Christine A1 - Panzer, Rüdiger A1 - Schrama, David A1 - Emmert, Steffen A1 - Boeckmann, Lars A1 - Thiem, Alexander T1 - Homozygous CRISPR/Cas9 knockout generated a novel functionally active exon 1 skipping XPA variant in melanoma cells JF - International Journal of Molecular Sciences N2 - Defects in DNA repair pathways have been associated with an improved response to immune checkpoint inhibition (ICI). In particular, patients with the nucleotide excision repair (NER) defect disease Xeroderma pigmentosum (XP) responded impressively well to ICI treatment. Recently, in melanoma patients, pretherapeutic XP gene expression was predictive for anti-programmed cell death-1 (PD-1) ICI response. The underlying mechanisms of this finding are still to be revealed. Therefore, we used CRISPR/Cas9 to disrupt XPA in A375 melanoma cells. The resulting subclonal cell lines were investigated by Sanger sequencing. Based on their genetic sequence, candidates from XPA exon 1 and 2 were selected and further analyzed by immunoblotting, immunofluorescence, HCR and MTT assays. In XPA exon 1, we established a homozygous (c.19delG; p.A7Lfs*8) and a compound heterozygous (c.19delG/c.19_20insG; p.A7Lfs*8/p.A7Gfs*55) cell line. In XPA exon 2, we generated a compound heterozygous mutated cell line (c.206_208delTTG/c.208_209delGA; p.I69_D70delinsN/p.D70Hfs*31). The better performance of the homozygous than the heterozygous mutated exon 1 cells in DNA damage repair (HCR) and post-UV-C cell survival (MTT), was associated with the expression of a novel XPA protein variant. The results of our study serve as the fundamental basis for the investigation of the immunological consequences of XPA disruption in melanoma. KW - DNA repair KW - nucleotide excision repair KW - XPA KW - CRISPR KW - knockout KW - protein variant KW - melanoma KW - A375 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-290427 SN - 1422-0067 VL - 23 IS - 19 ER - TY - JOUR A1 - Waider, Jonas A1 - Popp, Sandy A1 - Mlinar, Boris A1 - Montalbano, Alberto A1 - Bonfiglio, Francesco A1 - Aboagye, Benjamin A1 - Thuy, Elisabeth A1 - Kern, Raphael A1 - Thiel, Christopher A1 - Araragi, Naozumi A1 - Svirin, Evgeniy A1 - Schmitt-Böhrer, Angelika G. A1 - Corradetti, Renato A1 - Lowry, Christopher A. A1 - Lesch, Klaus-Peter T1 - Serotonin deficiency increases context-dependent fear learning through modulation of hippocampal activity JF - Frontiers in Neuroscience N2 - Brain serotonin (5-hydroxytryptamine, 5-HT) system dysfunction is implicated in exaggerated fear responses triggering various anxiety-, stress-, and trauma-related disorders. However, the underlying mechanisms are not well understood. Here, we investigated the impact of constitutively inactivated 5-HT synthesis on context-dependent fear learning and extinction using tryptophan hydroxylase 2 (Tph2) knockout mice. Fear conditioning and context-dependent fear memory extinction paradigms were combined with c-Fos imaging and electrophysiological recordings in the dorsal hippocampus (dHip). Tph2 mutant mice, completely devoid of 5-HT synthesis in brain, displayed accelerated fear memory formation and increased locomotor responses to foot shock. Furthermore, recall of context-dependent fear memory was increased. The behavioral responses were associated with increased c-Fos expression in the dHip and resistance to foot shock-induced impairment of hippocampal long-term potentiation (LTP). In conclusion, increased context-dependent fear memory resulting from brain 5-HT deficiency involves dysfunction of the hippocampal circuitry controlling contextual representation of fear-related behavioral responses. KW - tryptophan hydroxylase 2 KW - knockout KW - fear learning KW - extinction KW - long-term potentiation KW - hippocampus KW - immediate-early gene KW - serotonin deficiency Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-196077 SN - 1662-453X VL - 13 IS - 245 ER - TY - JOUR A1 - Liu, Ruiqi A1 - Kinoshita, Masato A1 - Adolfi, Mateus C. A1 - Schartl, Manfred T1 - Analysis of the role of the Mc4r system in development, growth, and puberty of medaka JF - Frontiers in Endocrinology N2 - In mammals the melanocortin 4 receptor (Mc4r) signaling system has been mainly associated with the regulation of appetite and energy homeostasis. In fish of the genus Xiphophorus (platyfish and swordtails) puberty onset is genetically determined by a single locus, which encodes the mc4r. Wild populations of Xiphophorus are polymorphic for early and late-maturing individuals. Copy number variation of different mc4r alleles is responsible for the difference in puberty onset. To answer whether this is a special adaptation of the Mc4r signaling system in the lineage of Xiphophorus or a more widely conserved mechanism in teleosts, we studied the role of Mc4r in reproductive biology of medaka (Oryzias latipes), a close relative to Xiphophorus and a well-established model to study gonadal development. To understand the potential role of Mc4r in medaka, we characterized the major features of the Mc4r signaling system (mc4r, mrap2, pomc, agrp1). In medaka, all these genes are expressed before hatching. In adults, they are mainly expressed in the brain. The transcript of the receptor accessory protein mrap2 co-localizes with mc4r in the hypothalamus in adult brains indicating a conserved function of modulating Mc4r signaling. Comparing growth and puberty between wild-type and mc4r knockout medaka revealed that absence of Mc4r does not change puberty timing but significantly delays hatching. Embryonic development of knockout animals is retarded compared to wild-types. In conclusion, the Mc4r system in medaka is involved in regulation of growth rather than puberty. KW - medaka KW - Mc4r KW - knockout KW - puberty KW - growth Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201472 VL - 10 ER - TY - JOUR A1 - Araragi, Naozumi A1 - Mlinar, Boris A1 - Baccini, Gilda A1 - Gutknecht, Lise A1 - Lesch, Klaus-Peter A1 - Corradetti, Renato T1 - Conservation of 5-HT1A receptor-mediated autoinhibition of serotonin (5-HT) neurons in mice with altered 5-HT homeostasis JF - Frontiers in Neuropharmacology N2 - Firing activity of serotonin (5-HT) neurons in the dorsal raphe nucleus (DRN) is controlled by inhibitory somatodendritic 5-HT1A autoreceptors. This autoinhibitory mechanism is implicated in the etiology of disorders of emotion regulation, such as anxiety disorders and depression, as well as in the mechanism of antidepressant action. Here, we investigated how persistent alterations in brain 5-HT availability affect autoinhibition in two genetically modified mouse models lacking critical mediators of serotonergic transmission: 5-HT transporter knockout (Sert-/-) and tryptophan hydroxylase-2 knockout (Tph2-/-) mice. The degree of autoinhibition was assessed by loose-seal cell-attached recording in DRN slices. First, application of the 5-HT1A-selective agonist R(+)-8-hydroxy-2-(di-n-propylamino)tetralin showed mild sensitization and marked desensitization of 5-HT1A receptors in Tph2-/- mice and Sert-/- mice, respectively. While 5-HT neurons from Tph2-/- mice did not display autoinhibition in response to L-tryptophan, autoinhibition of these neurons was unaltered in Sert-/- mice despite marked desensitization of their 5-HT1A autoreceptors. When the Tph2-dependent 5-HT synthesis step was bypassed by application of 5-hydroxy-L-tryptophan (5-HTP), neurons from both Tph2-/- and Sert-/- mice decreased their firing rates at significantly lower concentrations of 5-HTP compared to wildtype controls. Our findings demonstrate that, as opposed to the prevalent view, sensitivity of somatodendritic 5-HT1A receptors does not predict the magnitude of 5-HT neuron autoinhibition. Changes in 5-HT1A receptor sensitivity may rather be seen as an adaptive mechanism to keep autoinhibition functioning in response to extremely altered levels of extracellular 5-HT resulting from targeted inactivation of mediators of serotonergic signaling. KW - serotonin transporter KW - tryptophan hydroxylase-2 KW - knockout KW - dorsal raphe nucleus KW - autoinhibition KW - 5-HT1A receptor Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-97098 ER - TY - THES A1 - Erro, Alejandro Berna T1 - Generation and Characterization of Stromal Interaction Molecule 2 (STIM2)-deficient Mice T1 - Generierung und Charakterisierung von Stromal Interaction Molecule 2 (STIM2)-defizienten Mäusen N2 - An increase in cytosolic Ca2+ levels ([Ca2+]i) is a key event that occurs downstream of many signaling cascades in response to an external stimulus and regulates a wide range of cellular processes, including platelet activation. Eukaryotic cells increase their basal [Ca2+]i allowing extracellular Ca2+ influx into the cell, which involves different mechanisms. Store-operated Ca2+ entry (SOCE) is considered the main mechanism of extracellular Ca2+ influx in electrically non-excitable cells and platelets, and comprises an initial Ca2+ depletion from intracellular Ca2+ stores prior to activation of extracellular Ca2+ influx. Although the close relation between Ca2+ release from intracellular stores and extracellular Ca2+ influx was clear, the nature of the signal that linked both events remained elusive until 2005, when Stromal Interaction Molecule 1 (STIM1) was identified as an endoplasmic reticulum (ER) Ca2+ sensor essential for inositol (1,4,5)-trisphosphate (IP3)-mediated SOCE in vitro. However, the function of its homologue STIM2 in Ca2+ homeostasis was in general unknown. Therefore, mice lacking STIM2 (Stim2-/-) were generated in this work to study initially STIM2 function in platelets and in cells of the immune system. Stim2-/- mice developed normally in size and weight to adulthood and were fertile. However, for unknown reasons, they started to die spontaneously at the age of 8 weeks. Unexpectedly, Stim2-/- mice did not show relevant differences in platelets, revealing that STIM2 function is not essential in these cells. However, STIM2 seems to be involved in mammary gland development during pregnancy and is essential for mammary gland function during lactation. CD4+ T cells lacking STIM2 showed decreased SOCE. Our data suggest that STIM2 has a very specific function in the immune system and is involved in Experimental Autoimmune Encephalomyelitis (EAE) at early stages of the disease progression. Stim2-/- neurons were also defective in SOCE. Surprisingly, our results evidenced that STIM2 participates in mechanisms of neuronal damage after ischemic events in brain. This is the first time that the involvement of SOCE in ischemic neuronal damage has been reported. This finding may serve as a basis for the development of novel neuroprotective agents for the treatment of ischemic stroke, and possibly other neurodegenerative disorders in which disturbances in cellular Ca2+ homeostasis are considered a major pathophysiological component. N2 - Der Anstieg des cytosolischen Ca2+-Spiegels ([Ca2+]i) ist ein Schlüsselereignis, das vielen Signalkaskaden, durch extrazellulären Stimulus ausgelöst werden, nachgeschalten ist, und eine große Reihe zellulärer Prozesse reguliert, z.B. die Aktivierung von Blutplättchen. Eukaryotische Zellen erhöhen ihren basalen ([Ca2+]i) durch Einstrom von extrazellulärem Ca2+ in die Zelle hinein, was durch verschiedene Mechanismen geschehen kann. Store-operated Ca2+-entry (SOCE), wird als der Hauptmechanismus für den Einstrom von extrazellulärem Ca2+ in nicht elektrisch-erregbaren Zellen sowie Plättchen angesehen und beinhaltet einen initialen Ca2+-Ausstrom aus intrazellulären Speichern der dem Ca2+-Einstrom aus der Extrazellulärraum vorrausgeht. Obwohl die Beziehung zwischen Ca2+-Ausstrom aus intrazellulären Speichern und extrazellulärem Ca2+-Einstrom über die Plasmamembran viele Jahre bekannt war, so blieb doch das beide Ereignisse verknüpfende Element unbekannt. Im Jahre 2005 jedoch wurde Stromal Interaction Molecule 1 (STIM1) als Ca2+-Sensor des endoplasmatischen Retikulums (ER) und als essentieller Bestandteil für inositol(1,4,5)-triphosphat (IP3)-vermittelten SOCE in vitro identifiziert. Die Funktion seines Homologs, STIM2, in der Ca2+ Homeostase blieb jedoch unklar. Aus diesem Grund generierten wir STIM2-defiziente (Stim2-/-) Mäuse um die Funktion dieses Proteins in Blutplättchen und Immunzellen untersuchen zu können. Bis zum Erwachsenenalter entwickelten sich Stim2-/- Mäuse normal in Bezug auf Größe und Gewicht und waren fertil. Jedoch sterben die Tiere spontan aus unbekannten Gründen, beginnend ab einem Alter von 8 Wochen. Unerwarteter Weise, zeigten Stim2-/- Mäuse keine maßgeblichen Funktionsunterschiede in Plättchen, was eine essentielle Funktion von STIM2 in diesen Zellen ausschließt. Jedoch scheint STIM2 in die Entwicklung der Brustdrüsen während der Schwangerschaft involviert und essentiell für die Brustdrüsenfunktion während der Säugephase zu sein. Darüberhinaus zeigten STIM2 defiziente CD4+ T-Zellen einen verminderten SOCE. Weiter deuten unsere Daten auf eine spezifische Funktion von STIM2 im Immunsystem hin, mit einem Einfluss auf die frühen Phasen und das Fortschreiten der Experimentellen Autoimmun-Enzephalomyelitis (EAE). Stim2-/- Neuronen wiesen ebenso wie CD4+ T-Zellen einen gestörten SOCE auf. Desweiteren belegen unsere Ergebnisse, dass STIM2 überrascherweise an den Neuronen zerstörenden Mechanismen nach ischämischen Ereignissen des Gehirns mitwirkt. Dies ist die erste Studie, die von einer Beteiligung von SOCEan ischämischen neuronalen Schäden berichtet. Diese Entdeckungen können vielleicht als Basis für die Entwicklung neuer neuroprotektiver Medikamente bei ischämischen Schlaganfall dienen - und möglicherweise auch bei anderen neurodegenerativen Erkrankungen, bei denen Störungen der zellulären Ca2+ Homöostase als hauptsächliche pathophysologische Komponente angesehen werden. KW - Calcium-bindende Proteine KW - Intrazellulärraum KW - Thrombozyt KW - Knockout KW - STIM2 KW - SOC KW - SOCE KW - STIM2 KW - SOC KW - SOCE KW - Store-Operated KW - knockout Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-47301 ER -