TY - THES A1 - Wich, Peter Richard T1 - Multifunctional Oligopeptides as an Artificial Toolkit for Molecular Recognition Events T1 - Multifunktionale Oligopeptide als künstlicher Werkzeugkasten für molekulare Erkennungsprozesse N2 - The main focus of this thesis was the synthesis and analysis of multifunctional oligopeptides. The study of their non-covalent interactions with various counterparts revealed interesting new results, leading to both methodological and application related progress. The first project of this thesis concentrated on the in-depth analysis of the peptide receptor CBS-Lys-Lys-Phe-NH2 to acquire a better understanding of its binding mode upon complexation with a substrate. In this context it was possible to develop—in cooperation with the group of Prof. Sebastian Schlücker—a direct and label free spectroscopic detection of immobilized compounds which are often found in combinatorial libraries. This new screening method utilizes the advantages of the surface enhanced Raman spectroscopy and allowed for the first time a surface mapping of a single polystyrene bead for the identification of peptides in femtomolar concentrations. Hence, this method allows a very fast and sensitive detection of resin bound compounds. The development of this promising new approach set the starting point for future experiments to enable on-bead library screenings and to investigate the complex formation of immobilized compounds. After the comprehensive analysis of the basic structural features of small peptide receptors in the first part of this thesis, the second big block focused on its in vitro evaluation using biological relevant targets. Therefore, several different modifications of the initial peptide structures were synthesized. These modifications provided a molecular toolkit for the tailor made synthesis of structures individually designed for the respective target. The first tests addressed the interaction with Alzheimer’s related amyloid fibrils. During these experiments, the successful SPPS syntheses of tri- and tetravalent systems were achieved. The comparison of the multivalent form with the corresponding monovalent version was then under special investigations. These concentrated mainly on the interaction with various bacteria strains, as well as with different parasites. To localize the compounds within the organisms, the synthesis of fluorescence labelled versions was achieved. In addition, several compounds were tested by the Institute for Molecular Infection Biology of the University of Würzburg for their antibacterial activity. This thorough evaluation of the biological activity generated precious information about the influence of small structural changes in the peptide receptors. Especially the distinct influence of the multivalency effect and the acquired synthetic skills led to the development of an advanced non-covalent recognition event, as described in the final project of this thesis. The last part of this thesis discussed the development of a novel inhibitor for the serine protease beta-tryptase based on a tailor-made surface recognition event. It was possible to study and analyze the complex interaction with the unique structure of tryptase, that features a tetrameric frame and four catalytic cleavage sites buried deep inside of the hollow structure. However, the point of attack were not the four binding pockets, as mostly described in the literature, but rather the acidic areas around the cleavage sites and at the two circular openings. These should attract peptides with basic residues, which then can block the accessibility to the active sites. A combinatorial library of 216 tetravalent peptide compounds was synthesized to find the best structural composition for the non-covalent inhibition of beta-tryptase. For the screening of the library a new on-bead assay was applied. With this method a simultaneous readout of the total inhibition of all library members was possible, thus allowing a fast and direct investigation of the still resin bound inhibitors. Several additional experiments in solution unveiled the kinetics of the inhibition process. In conclusion, both mono- and multivalent inhibitors interact in a non-destructive and reversible way with the tryptase. N2 - Der Hauptfokus dieser Arbeit lag in der Synthese und Analyse multifunktionaler Oligopeptide. Die Untersuchung ihrer nicht-kovalenten Wechselwirkungen mit verschiedenen Strukturen resultierte sowohl in interessanten methodischen als auch anwendungsbezogenen Fortschritten. Das erste Projekt dieser Dissertation konzentrierte sich auf die detaillierte Analyse des Peptid-Rezeptors CBS-Lys-Lys-Phe-NH2, um ein besseres Verständnis seines Bindungsverhaltens während einer Substratkomplexierung zu erhalten. In diesem Zusammenhang gelang in Kooperation mit der Gruppe von Prof. Sebastian Schlücker, die Entwicklung einer direkten und markierungsfreien spektroskopischen Methode zur Detektion festphasengebundener Substanzen, wie man sie z.B. oft in kombinatorischen Molekülbibliotheken findet. Diese neuartige Screeningmethode bedient sich der Vorteile der Oberflächen-verstärkten Raman-Streuung (SERS) und ermöglichte erstmals das Scannen der Oberfläche eines einzelnen Harz-Kügelchens und damit die Identifizierung von Peptiden in femtomolaren Konzentrationen. Zusammenfassend erlaubt diese neue Methode eine schnelle und hoch sensitive Detektion harzgebundener Substanzen. Die Entwicklung dieses viel versprechenden Ansatzes bildet die Basis möglicher zukünftiger Entwicklungen für das direkte und schnelle Screening von kombinatorischen Bibliotheken sowie für die detaillierte Untersuchung der Komplexbildung von immobilisierten Verbindungen. Nach der ausführlichen Analyse der grundlegenden strukturellen Eigenschaften kleiner Peptidrezeptoren im ersten Teil dieser Dissertation schloss sich im zweiten großen Block dessen in vitro Evaluierung mit Hilfe verschiedener biologisch relevanter Zielstrukturen an. Dazu wurden einige strukturell verwandte Versionen der ursprünglichen Rezeptoren synthetisiert. Dies ermöglichte die Zusammenstellung eines variablen molekularen Baukasten zur zielgerichteten Synthese von Strukturen, die individuell für ausgesuchte Ziele entworfen werden konnten. Die ersten Tests betrachteten die Wechselwirkung mit Amyloid-Fibrillen, die im Zusammenhang mit der Alzheimer-Krankheit stehen. Während dieser Arbeiten wurden erste tri- und tetravalente Rezeptorsysteme mit Hilfe der Festphasenchemie synthetisiert. In diesem Zusammenhang war insbesondere der Vergleich der multivalenten Systemen mit den entsprechenden monovalenten Peptiden von Interesse. Die Untersuchungen konzentrierten sich hauptsächlich auf die Interaktion mit verschiedenen Bakterienarten, sowie unterschiedlichen Parasiten. Um die Verbindungen in den Organismen zu lokalisieren wurden spezielle Fluoreszenz-markierte Versionen der Peptide synthetisiert. Zusätzlich wurden einige Verbindung vom Institut für Molekulare Infektionsbiologie der Universität Würzburg auf ihre antibakterielle Aktivität untersucht. Mit dieser detaillierten Evaluierung der biologischen Aktivität konnten somit wertvolle Informationen über den Einfluss kleiner struktureller Änderungen in den Peptidrezeptoren gewonnen werden. Insbesondere der ausgeprägte Einfluss des multivalenten Effektes und die angeeigneten synthetischen Fertigkeiten führten zur Entwicklung und Untersuchung eines komplexeren Bindungsereignisses. Der letzte Abschnitt dieser Dissertation beschreibt die Entwicklung eines neues Inhibitors der Serinprotease beta-Tryptase, welche eine tetramere Struktur aufweist, in der die vier aktiven Zentren sich im Inneren eines zentralen Hohlraumes befinden. In diesem Zusammenhang gelang es die zur Inhibierung notwendige Komplexbildung, die auf einem speziell zugeschnittenen Oberflächenerkennungsprozess basiert, zu studieren und analysieren. Die Angriffspunkte waren jedoch nicht die üblicherweise in der Literatur beschriebenen aktiven Zentren, sondern Anhäufungen negativ geladener Aminosäure-Reste, die in der Umgebung der aktiven Zentren sowie in den beiden Eingangsbereichen zum zentralen Hohlraum zu finden sind. Diese sollten in der Lage sein positiv geladene Aminosäurereste anzuziehen und dazu führen, dass ein entsprechend voluminöses Peptid die Zugänglichkeit zu den aktiven Zentren einschränkt. Daraufhin wurde eine kombinatorische Bibliothek bestehend aus 216 Verbindungen synthetisiert. Es war das Ziel, die beste strukturelle Zusammensetzung zu finden, die eine effiziente nicht-kovalente Inhibierung der Tryptase ermöglicht. Verschiedene zusätzliche Experimente in Lösung halfen bei der Aufklärung der kinetischen Beschreibung des Hemmprozesses. Zusammenfassend lässt sich die Wechselwirkung zwischen der Tryptase und den sowohl mono- als auch multivalenten Inhibitoren als nicht-destruktiv und gleichzeitig reversibel beschreiben. KW - Peptidsynthese KW - Kombinatorische Synthese KW - Enzyminhibitor KW - Aminosäuren KW - Organische Synthese KW - Guanidinderivate KW - Molekulare Erkennung KW - Onbead-Enzymscreening KW - Guanidiniocarbonylpyrrol KW - nicht-kovalente Wechselwirkungen KW - Supramolekulare Chemie KW - onbead enzym screening KW - guanidiniocarbonyl pyrrole KW - non-covalent interactions KW - supramolecular chemistry Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-38108 ER - TY - THES A1 - Geiger, Lars T1 - The versatile use of Guanidiniocarbonylpyrroles : from self-assembly to peptide recognition T1 - Der vielseitige Einsatz von Guanidiniocarbonylpyrrolen: Von der Selbstassoziation bis zur Peptide-Erkennung N2 - Die vorliegende Arbeit gliedert sich in zwei Themenschwerpunkte. Ein supramolekulares Projekt beinhaltete die Entwicklung von neuen flexiblen, selbst-aggregierenden Zwitterionen als Bausteine für supramolekulare Polymere. In einem zweiten bioorganischem Teil bestand das Ziel darin, Rezeptoren für Aminosäuren und Dipeptide in Wasser zu entwickeln. Beide Projekte basieren auf dem Guanidiniocarbonylpyrrol als effizientes Bindungsmotiv für die Komplexierung von Carboxylaten in wässrigen Lösungen. Eine notwendige Voraussetzung für die Realisierung dieser Projekte war jedoch zunächst die Entwicklung einer allgemeinen, effizienten und milden Synthese für Guanidiniocarbonylpyrrole. Die bei der zuvor verwendeten Methode aggressiven Reaktionsbedingungen und die problematische Aufreinigung verhinderten eine größere Anwendung dieses Bindungsmotivs in bioorganischen und supramolekularen Projekten. Im Rahmen dieser Arbeit gelang es mir erfolgreich eine neue Syntheseroute zu entwickeln. Hierbei wurde mono-tBoc-Guanidine mit dem Benzylester mittels PyBOP gekuppelt und nach Entschützung der Benzylschutzgruppe wurde die zentrale Zwischenstufe für die weiteren Synthesen, die tBoc-geschützte Guanidinocarbonylpyrrol-Säure erhalten. Durch diese neuartige Synthese war es möglich, eine Reihe von flexiblen Zwitterionen 3-6 herzustellen und deren Selbst-Aggregation und den Einfluß der Kettenlänge und somit Flexibilität der Alkylkette auf Struktur und Stabilität der gebildeten Aggregate in Lösung sowie auch in der Gasphase zu untersuchen. In DMSO deuten NMR-Verdünnungsreihen darauf hin, dass die flexiblen Zwitterionen mit n = 1, 3 und 5 oligomere Strukturen ausbilden. Im Falle von n = 1 werden hoch stabile helicale und Nanometer große Aggregate in der gebildet. In den Gasphasen-Studien wurde die Stabilität und Zerfallskinetik einer Reihe von Natriumaddukten der Dimere von n = 2, 3 und 5 untersucht. Dieses gelang durch die Methode der „infrared multiphoton dissociation Fourier transform ion cyclotron resonance mass spectrometry“ (IRMPD-FT-ICR MS). Solche Studien ermöglichen möglicherweise in Zukunft das gezielte Design von supramolekularen Bausteinen. Der bioorganische Teil meiner Arbeit setzte sich aus drei Einzelprojekten zusammen. So synthetisierte ich durch eine fünfstufige Synthesesequenz vier neue Arginin-Analoga, die in Zukunft als Ersatz für Arginin in Peptide eingebaut werden können. Als Testreaktion für die Eignung dieser Verbindungen in einer Festphasenpeptidsynthese, wurde ein Tripetid Ala-AA1-Val (AA: Arginin-Analogon) mit einem eingebauten Arginin-Analogon erfolgreich hergestellt. In einem zweiten Projekt habe ich den Einfluß einer zusätzlichen ionischen Wechselwirkung in unserem Bindungsmotiv untersucht. Dazu wurde ein zweifach-kationischer Rezeptor und der dreifach-geladenen Rezeptor synthetisiert und physikalisch-organisch ihre Bindungseigenschaften mit Hilfe von NMR-Titrationsexperimenten gegen eine Reihe von Aminosäuren untersucht. Der dreifach-kationische Rezeptor 11 zeigte hierbei herausragende Bindungseigenschaften und war um ca. den Faktor 100 besser als für die bisher bekannten Guanidiniocarbonylpyrrole. Die Assoziationskonstanten waren auch fast reinem Wasser mit bis zu Kass = 2000 noch bemerkenswert hoch. Im dritten Projekt habe ich einen de-novo entwickelten Rezeptor für C-terminale Dipeptide in einer beta-Faltblatt Struktur entwickelt.Dieser Rezeptor wurde mittels NMR and UV-Titrationen untersucht. In 40 % Wasser/ 60 % DMSO waren die Bindungskonstanten zu hoch um überhaupt quantifiziert zu werden. Deshalb wurden die Bindungseigenschaften des Rezeptors mittels UV Titrationen in einer Mischung aus 90 % Wasser mit 10 % DMSO gegen eine Reihe von Dipeptiden und Aminosäuren getestet. Die Bindungsdaten zeigen, dass Rezeptor Dipeptide mit ausgezeichneten Bindungskonstanten (Kass > 10000 M-1) komplexiert. Im Gegensatz dazu bindet der Rezeptor 12 Aminosäuren um den Faktor zehn schlechter (Kass > 1000 M-1). Die Komplexstabilität nimmt hierbei in Abhängigkeit von der Seitenkette des Dipeptids in der Reihe Gly < Ala < Val zu, was sich mit der abnehmenden Flexibilität und zunehmenden Hydrophobizität der Seitenkette erklären lässt. Diese Eigenschaften machen den Rezeptor 12 zu dem besten bisher bekannten Dipeptidrezeptor in wässrigen Lösungen. Innerhalb meiner Arbeit gelang es mir somit, nicht nur eine essentiell wichtige, milde und effiziente Synthese für Guanidinocarbonylpyrrole zu entwickeln, sondern es gelang mir ebenso ein neues Bindungsmotiv für die Komplexierung von Aminosäuren in Wasser zu entwickeln. Zusätzlich konnte noch der Dipeptidrezeptor erfolgreich synthetisiert und untersucht werden. Mit Bindungskonstanten für von Kass > 10000 M-1 ist er der derzeit beste Dipeptidrezeptor in wässriger Lösung. N2 - The present thesis encompasses two parts. The first supramolecular part focuses on the development of new flexible self-assembling zwitterions as building blocks for supramolecular polymers. In the second part, the aim was to develop bioorganic receptors for amino acids and dipeptides in aqueous media. Both research projects are based on the guanidiniocarbonyl pyrrole 1 as a new efficient binding motif for the complexation of carboxylates in polar solution.A necessary requirement for the realization of these research projects was to develop an efficient and mild synthetic approach for the cationic guanidiniocarbonyl pyrroles in general. The harsh reaction conditions of the previously used method and the problematic purification of the cationic guanidinocarbonyl pyrroles so far prevented a more extensive exploration in bioorganic and supramolecular research. In the course of this work I successfully developed a new synthesis starting with mono tBoc-protected guanidine that was coupled with a benzyl protected pyrrole carboxylic acid. After deprotection of the benzyl group, a key intermediate in the newly developed synthesis, the tBoc-protected guanidinocarbonyl pyrrole acid, was obtained. This new, mild and extremely efficient synthetic approach for the introduction of acyl guanidines is now the standard procedure in our group for the preparation of both solution and solid-phase guanidiniocarbonyl pyrroles. With this facile method at hand, a new class of flexible zwitterions, in which a carboxylate is linked via an alkyl chain to a guanidiniocarbonyl pyrrole cation was synthesized. The self-aggregation and the influence of the length and therefore flexibility of the alkyl spacer on the structure and stability of the formed aggregates were studied in solution and gas phase. In solution the aggregation was studied by NMR-dilution experiments in DMSO which suggest that flexible zwitterions with n = 1, 3 and 5 form oligomers. For n = 1, highly stable helical aggregates with nanometer size are formed. In the gas phase studies the stability and the fragmentation kinetics of a series of sodiated dimeric zwitterions with n = 2, 3 and 5 were investigated. This was done by infrared multiphoton dissociation Fourier transform ion cyclotron resonance mass spectrometry (IRMPD-FT-ICR-MS). These kinds of studies can be used in the future for a more directed design of supramolecular building blocks The bioorganic research part comprises three different projects. In a first project I synthesized four new arginine analogues which can be implemented in peptides as a substitute for arginine. Therefore, I developed the new multi-step synthesis shown below for these arginine analogues. As a test for their application in normal solid phase synthesis, I successfully prepared a tripeptide sequence Ala-AA1-Val (AA: arginine analogue. In a second project I studied the influence of additional ionic interactions within our binding motif. I synthesized a di-cationic and a tris-cationic receptor and evaluated the binding properties via NMR titration experiments against a variety of amino acids. Especially, the tris-cationic receptor was capable to strongly complex amino acids. The association constants were about a factor of 100 higher than those for the guanidiniocarbonyl pyrroles known so far. Even in 90 %water/10 % DMSO the association constants determined by NMR titration were extremely high with values around Kass = 2000 M-1. In the third project I developed a de-novo designed receptor for C-terminal dipeptides in a beta-sheet conformation based on molecular calculations. This receptor was studied in NMR and also UV titration experiments. In 40 % water/ 60 % DMSO the association constants were too strong to be measured by NMR titration experiments. Therefore, the complexation properties of 12 were studied by UV titration in water (with 10 % DMSO added for solubility reasons) with various dipeptides and amino acids as substrates. The data show that 12 binds dipeptides very efficiently even in water with association constants Kass > 10000 M-1, making 12 one of the most effective dipeptide receptors known so far. In contrast to that, simple amino acids are bound up to ten times less efficiently (Kass > 1000 M-1) than dipeptides. In the series of dipeptides studied the complex stability increases depending on the side chains present in the order Gly < Ala < Val which is a result of the decreasing flexibility of the peptide and the increasing hydrophobicity of the side chains. The binding properties of this receptor are superior to any other dipeptide receptor reported so far. Within my thesis I have not only developed an essential, mild and efficient synthetic approach for guanidiniocarbonyl pyrroles in general, but also a new binding motif for the complexation of amino acids 15, 11 and in addition a dipeptide receptor 12 that is superior to all dipeptides receptors known so far. KW - Guanidinderivate KW - Supramolekulare Chemie KW - Selbstassoziation KW - Bioorganik KW - supramolekulare Chemie KW - molekulare Erkennung KW - Self-Assembly KW - Bioorganic chemistry KW - supramolecular chemistry KW - molecular recognition Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-9272 ER -