TY - THES A1 - Schmitz, Tobias T1 - Functional coatings by physical vapor deposition (PVD) for biomedical applications T1 - Funktionelle Schichten hergestellt durch physikalische Gasphasenabescheidung für biomedizinische Anwendungen N2 - Metals are the most used materials for implant devices, especially in orthopedics, but despite their long history of application issues such as material failure through wear and corrosion remain unsolved leading to a certain number of revision surgeries. Apart from the problems associated with insufficient material properties, another serious issue is an implant associated infection due to the formation of a biofilm on the surface of the material after implantation. Thus, improvements in implant technology are demanded, especially since there is a projected rise of implants needed in the future. Surface modification methods such as physical vapour deposition (PVD), oxygen diffusion hardening and electrochemical anodization have shown to be efficient methods to improve the surfaces of metallic bulk materials regarding biomedical issues. This thesis was focused on the development of functional PVD coatings that are suitable for further treatment with surface modification techniques originally developed for bulk metals. The aim was to precisely adjust the surface properties of the implant according to the targeted application to prevent possible failure mechanisms such as coating delamination, wear or the occurrence of post-operative infections. Initially,  tantalum layers with approx 5 µm thickness were deposited at elevated substrate temperatures on cp Ti by RF magnetron sputtering. Due to the high affinity of tantalum to oxygen, these coatings are known to provide a self healing capacity since the rapid oxide formation is known to close surface cracks. Here, the work aimed to reduce the abrupt change of mechanical properties between the hard and brittle coating and the ductile substrate by creating an oxygen diffusion zone. It was found that the hardness and adhesion could be significantly increased when the coatings were treated afterwards by oxygen diffusion hardening in a two step process. Firstly, the surface was oxidized at a pressure of 6.7•10-3 mbar at 350 450 °C, followed by 1-2 h annealing in oxygen-free atmosphere at the same temperature leading to a diffusion of oxygen atoms into deeper parts of the substrate as proved by X-ray diffraction (XRD) analysis. The hereby caused mechanical stress in the crystal lattice led to an increase in Vickers hardness of the Ta layers from 570 HV to over 900 HV. Investigations into the adhesion of oxygen diffusion treated samples by Rockwell measurements demonstrated an increase of critical force for coating delamination from 12 N for untreated samples up to 25 N for diffusion treated samples. In a second approach, the development of modular targets aimed to produce functional coatings by metallic doping of titanium with biologically active agents. This was demonstrated by the fabrication of antimicrobial Ti(Ag) coatings using a single magnetron sputtering source equipped with a titanium target containing implemented silver modules under variation of bias voltage and substrate temperature. The deposition of both Ti and Ag was confirmed by X-ray diffraction and a clear correlation between the applied sputtering parameters and the silver content of the coatings was demonstrated by ICP-MS and EDX. Surface-sensitive XPS measurements revealed that higher substrate temperatures led to an accumulation of Ag in the near-surface region, while the application of a bias voltage had the opposite effect. SEM and AFM microscopy revealed that substrate heating during film deposition supported the formation of even and dense surface layers with small roughness values, which could even be enforced by applying a substrate bias voltage. Additional elution measurements using ICP-MS showed that the release kinetics depended on the amount of silver located at the film surface and hence could be tailored by variation of the sputter parameters. In a final step, the applied Ti and Ti(Ag) coatings deposited on cp Ti, stainless steel (316L) and glass substrates were subsequently nanostructured using a self-ordering process induced by electrochemical anodization in aqueous fluoride containing electrolytes. SEM analysis showed that nanotube arrays could be grown from the Ti and Ti(Ag) coatings deposited at elevated temperatures on any substrate, whereby no influence of the substrate on nanotube morphology could be observed. EDX measurements indicated that the anodization process led to the selective etching of Ti from Ti(Ag) coating. Further experiments on coatings deposited on glass surfaces revealed that moderate substrate temperatures during deposition resulting in smooth Ti layers as determined by AFM measurements, are favorable for the generation of highly ordered nanotube arrays. Such arrays exhibited superhydrophilic behavior as proved by contact angle measurements. XRD analysis revealed that the nanostructured coatings were amorphous after anodization but could be crystallized to anatase structure by thermal treatment at temperatures of 450°C. N2 - Metalle sind die am häufigsten verwendeten Werkstoffe für orthopädische Skelettimplantate, wobei trotz der langjährigen Anwendungserfahrung immer noch Probleme wie Verschleiß und Korrosion zum Materialversagen führen können und damit eine Revisionsoperation notwendig machen. Abgesehen von solchen materialbedingten Problemen, sind implantatassoziierte Infektionen aufgrund der Bildung eines Biofilms auf der Werkstoffoberfläche nach der Implantation ebenfalls klinisch von hoher Relevanz. Somit sind Verbesserungen in der Implantattechnologie notwendig, zumal ein Anstieg der Anzahl von eingebrachten Implantaten in der Zukunft prognostiziert wird. Oberflächenmodifizierungsverfahren, wie die physikalische Dampfphasenabscheidung (PVD), Sauerstoffdiffusionshärtung und elektrochemische Anodisierung sind dabei effiziente Methoden, um die Oberflächeneigenschaften von metallischen Werkstoffen für biomedizinische Anwendungen einzustellen. Diese Arbeit ist dabei auf die Entwicklung funktioneller PVD-Beschichtungen gerichtet, wobei deren weiterführende Modifikation mit ursprünglich für Volumenwerkstoffe entwickelten Verfahren erfolgt. Ziel war es, hierdurch die Eigenschaften der Implantatoberflächen noch anwendungsgezielter einzustellen, um möglichen Versagensmechanismen wie Schichtdelamination, Verschleiß oder das Auftreten einer post-operativen Infektion vorbeugen zu können. Zunächst wurden -Tantalschichten mit ca. 5 µm Dicke bei erhöhten Substrattemperaturen auf cp-Titan durch RF-Magnetron-Sputtern abgeschieden. Aufgrund der hohen Affinität von Tantal zu Sauerstoff ist für diese Beschichtungen ein Selbstheilungsmechanismus bekannt, da die schnelle Oxidbildung Oberflächenrisse schließt. Hier hatte die Arbeit es zum Ziel, die abrupte Änderung der mechanischen Eigenschaften zwischen der harten und spröden Beschichtung und dem duktilen Substrat durch die Erzeugung einer Sauerstoffdiffusionszone zu reduzieren. Es wurde gezeigt, dass die Härte und Adhäsion der Schichten durch ein zweistufiges Sauerstoffdiffusionshärten deutlich erhöht werden konnte. Hierzu wurde zunächst die Oberfläche bei einem Druck von 6,7*10-3 mbar bei 350-450 °C oxidiert. Ein nachfolgendes Anlassen in sauerstofffreier Atmosphäre bei gleicher Temperatur für 1-2 h führte dann zu einer Diffusion von Sauerstoffatomen in tiefere Bereiche des metallischen Substrats wie durch Röntgenbeugung (XRD) gezeigt werden konnte. Die hierdurch verursachte mechanische Spannung im Kristallgitter führte zu einem Anstieg der Vickers-Härte der Tantal-Schichten von 570 HV auf 900 HV. Untersuchungen zur Haftung der Sauerstoffdiffusions-behandelten Proben anhand von Rockwell Messungen zeigten einen Anstieg der zur Delamination der Beschichtung notwendigen kritischen Kraft von 12 N für unbehandelte Proben auf bis zu 25 N für die diffusionsgeglühten Proben. Ein zweiter Ansatz war auf die Entwicklung modularer Targets zur Erzeugung funktioneller Titanbeschichtungen mit Dotierungen aus biologisch aktiven Metallionen gerichtet. Dies wurde durch die Herstellung von antimikrobiellen Ti(Ag) Beschichtungen über eine einzelne Titan-Magnetronsputterquelle mit implementierten Silbermodulen unter Variation der Vorspannung und Substrattemperatur erreicht. Die Abscheidung von sowohl Ti und Ag wurde durch Röntgenbeugung gezeigt und es konnte eine valide Korrelation zwischen den angewandten Sputter-Parametern und dem Silbergehalt der Beschichtungen durch ICP-MS und EDX-Messungen bestätigt werden. Oberflächenempfindliche XPS-Messungen zeigten, dass höhere Substrattemperaturen zu einer Anreicherung von Ag im oberflächennahen Bereich, während das Anlegen einer Vorspannung den gegenteiligen Effekt hatte. REM und AFM-mikroskopische Untersuchungen zeigten, dass die Aufheizung des Substrats während der Schichtabscheidung die Bildung glatter und dichter Schichten mit geringer Rauhtiefe unterstützt, was durch Anlegen einer Vorspannung nochmals verstärkt werden konnte. Zusätzliche Freisetzungsstudien durch ICP-MS ergaben, dass die Freisetzungskinetik abhängig war von der Menge an Silber im oberflächennahen Bereich und somit über die Variation der Beschichtungsparameter eingestellt werden kann. In einem letzten Schritt wurden auf cp Ti, Edelstahl (316L) und Glassubstrate abgeschiedene Ti und Ti(Ag) Beschichtungen durch eine nachgeschaltete, elektrochemische Anodisierung in einem wässrigen fluoridhaltigen Elektrolyten nanostrukturiert. Rasterelektronenmikroskopische Untersuchungen zeigten, dass hierdurch nanotubuläre Arrays aus den Beschichtungen bei erhöhter Temperatur unabhängig von der Art des Substrats erhalten werden konnten, wobei kein Einfluss des Substrattyps auf die Morphologie der Nanostrukturen beobachtet werden konnte. EDX-Messungen zeigten, dass die Anodisierung zu einer selektiven Ätzung von Titan in Ti(Ag) Beschichtung führte. Weitere Versuche an Schichtsystemen auf Glasoberflächen ergaben, dass glatte Ti-Schichten durch moderate Substrattemperaturen während der Abscheidung entstanden, und diese sich vorteilhaft auf die Erzeugung hochgeordneter nanotubulärer Arrays auswirkte. Derartige Arrays zeigten in Kontaktwinkelmessungen ein superhydrophiles Verhalten. Röntgendiffraktometrische Analysen ergaben eine initial nach der Anodisierung amorphe Struktur der nanostrukturierten Beschichtungen, wobei durch eine thermische Behandlung bei Temperaturen von 450 °C die Bildung einer Anatas-Struktur beobachtet wurde. KW - PVD-Verfahren KW - Tantal KW - Nanoröhre KW - PVD coatings KW - Oxygen diffusion hardening KW - Ti(Ag) coatings KW - Nanotubular coatings KW - PVD Beschichtung KW - Sauerstoffdiffusionshärtung KW - Ti(Ag) Beschichtungen KW - Nanotubuläre Beschichtungen Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-144825 ER - TY - THES A1 - Kraus, Hannes T1 - Optically Detected Magnetic Resonance on Organic and Inorganic Carbon-Based Semiconductors T1 - Optisch detektierte Magnetresonanz an organischen und anorganischen kohlenstoffbasierten Halbleitern N2 - In dieser Arbeit werden drei verschiedene kohlenstoffbasierte Materialsysteme behandelt: (i) Organische Halbleiter und kleine Moleküle, in Kombination mit Fullerenen für Anwendungen in der organischen Photovoltaik (OPV), (ii) Halbleitende Einzelwand-Kohlenstoffnanoröhren und (iii) Siliziumkarbid (SiC), dessen Defekte erst seit kurzem als Kandidaten für Quantenapplikationen gehandelt werden. Alle Systeme wurden mit optisch detektierter Magnetresonanzspektroskopie (ODMR) untersucht. Im OPV-Kapitel, die intrinsischen Parameter und Orientierungen von Exzitonen mit hohem Spin wurden für die Materialsysteme P3HT, PTB7 und DIP untersucht. Speziell der Einfluss von Ordnung diesen organischen Systemen wurde diskutiert. Der zweite Teil des Kapitels beschäftigt sich mit Triplettgeneration mittels Elektronenrücktransfer im leistungsfähigen Materialsystem PTB7:PC71BM. Das Kohlenstoffnanoröhren-Kapitel zeigt zuert den ersten zweifelsfreien Nachweis von Triplettexzitonen in halbleitenden (6,5) Einzelwandkohlenstoffnanoröhren (SWNT), mittels ODMR-Spektroskopie. Ein Modell für die Anregungskinetik, die intrinsischen Parameter des Exzitons und Abhängigkeit von der Orientierung der Röhren wurden diskutiert. Der letzte Teil der Arbeit gilt Spinzentren in Siliziumkarbid. Nach einer kurzen Einführung in das Materialsystem wird die Spinmultiplizität für die V2 und V3 Siliziumfehlstellen, sowie eines Frenkelpaars und eines noch nicht zugeordneten Defekts (UD) in 6H SiC, weiterhin für die V2 Fehlstelle und das Frenkelpaar in 4H SiC, durchgängig zu S=3/2 festgestellt. Das spinpolarisierte Befüllen der 3/2-Zustände des Grundzustands der Siliziumfehlstellen erlaubt stimulierte Mikrowellenemission. Ausserdem wurde für UD und Frenkelpaar in 6H SiC eine große Temperaturabhängigkeit der Nullfeldparameter festgestellt, während die Siliziumfehlstellen temperaturunabhängig sind. Anwendung des UD und Frenkelpaars als Temperatursensor, und der Vakanzen als Vektormagnetometer wurden diskutiert. N2 - In this work, three different material systems comprising carbon were researched: (i) Organic polymers and small molecules, in conjunction with fullerene molecules for applications in organic photovoltaics (OPV), (ii) single walled semiconducting carbon nanotubes and (iii) silicon carbide (SiC), whose defect color centers are recently in the limelight as candidates for quantum applications. All systems were analyzed using the optically detected magnetic resonance (ODMR) spectroscopy. In the OPV chapter, first the intrinsic parameters and orientations of high spin excitons were analyzed in the materials P3HT, PTB7 and DIP. Specifically the influence of ordering in these organic systems was adressed. The second part of the OPV chapter is concerned with triplet generation by electron back transfer in the high-efficiency OPV material combination PTB7:PC71BM. The carbon nanotube chapter first shows the way to the first unambiguous proof of the existence of triplet excitons in semiconducting (6,5) single-walled carbon nanotubes (SWNT) by ODMR spectroscopy. A model for exciton kinetics, and also orientation and intrinsic parameters were propoesed. The last part of this work is devoted to spin centers in silicon carbide (SiC). After a brief introduction, the spin multiplicity of the V2 and V3 silicon vacancies, and also of a Frenkel pair and an unassigned defect UD in 6H SiC, and of the V2 vacancy and the Frenkel pair in 4H SiC, was shown to be S=3/2. The spin polarized pumping of the 3/2 manifold of the quartet ground state of the silicon vacancies allows stimulated microwave emission. Furthermore, in 6H SiC, the UD and Frenkel pair were shown to have a large dependence of their intrinsic zero field interaction parameters on the temperature, while the vacancies are temperature independent. The application of the UD and Frenkel pair as temperature sensor, and of the vacancies as a vector magnetic field sensor is discussed. KW - ODMR-Spektroskopie KW - Organischer Halbleiter KW - quantum center KW - Siliciumcarbid KW - Nanoröhre Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-106308 ER - TY - THES A1 - Shityakov, Sergey T1 - Molecular modelling and simulation of retroviral proteins and nanobiocomposites T1 - Simulationen und Interaktionen viraler Proteine sowie von Kohlenstoffenanoröhren mit Membranen und Proteinen N2 - Molecular modelling and simulation are powerful methods in providing important in-formation on different biological systems to elucidate their structural and functional proper-ties, which cannot be determined in experiment. These methods are applied to analyse versa-tile biological systems: lipid membrane bilayers stabilized by an intercalated single wall carbon nanotube and retroviral proteins such as HIV protease and integrase. HIV-1 integrase has nuclear localization signals (NLS) which play a crucial role in nuclear import of viral preintegration complex (PIC). However, the detailed mechanisms of PIC formation and its nuclear transport are not known. Previously it was shown that NLSs bind to the cell transport machinery e.g. proteins of nuclear pore complex such as transportins. I investigated the interaction of this viral protein HIV-1 integrase with proteins of the nuclear pore complex such as transportin-SR2 (Shityakov et al., 2010). I showed that the transportin-SR2 in nuclear import is required due to its interaction with the HIV-1 integrase. I analyzed key domain interaction, and hydrogen bond formation in transportin-SR2. These results were discussed in comparison to other retroviral species such as foamy viruses to better understand this specific and efficient retroviral trafficking route. The retroviral nuclear import was next analyzed in experiments regarding the retroviral ability to infect nondividing cells. To accomplish the gene transfer task successfully, ret-roviruses must efficiently transduce different cell cultures at different phases of cell cycle. However, promising and safe foamy viral vectors used for gene transfer are unable to effi-ciently infect quiescent cells. This drawback was due to their inability to create a preintegra-tion complex (PIC) for nuclear import of retroviral DNA. On the contrary, the lentiviral vec-tors are not dependant on cell cycle. In the course of reverse transcription the polypurine tract (PPT) is believed to be crucial for PIC formation. In this thesis, I compared the transduction frequencies of PPT modified FV vectors with lentiviral vectors in nondividing and dividing alveolar basal epithelial cells from human adenocarcinoma (A549) by using molecular cloning, transfection and transduction techniques and several other methods. In contrast to lentiviral vectors, FV vectors were not able to effi-ciently transduce nondividing cell (Shityakov and Rethwilm, unpublished data). Despite the findings, which support the use of FV vectors as a safe and efficient alternative to lentiviral vectors, major limitation in terms of foamy-based retroviral vector gene transfer in quiescent cells still remains. Many attempts have been made recently to search for the potential molecules as pos-sible drug candidates to treat HIV infection for over decades now. These molecules can be retrieved from chemical libraries or can be designed on a computer screen and then synthe-sized in a laboratory. Most notably, one could use the computerized structure as a reference to determine the types of molecules that might block the enzyme. Such structure-based drug design strategies have the potential to save off years and millions of dollars compared to a more traditional trial-and-error drug development process. After the crystal structure of the HIV-encoded protease enzyme had been elucidated, computer-aided drug design played a pivotal role in the development of new compounds that inhibit this enzyme which is responsible for HIV maturation and infectivity. Promising repre-sentatives of these compounds have recently found their way to patients. Protease inhibitors show a powerful sustained suppression of HIV-1 replication, especially when used in combi-nation therapy regimens. However, these drugs are becoming less effective to more resistant HIV strains due to multiple mutations in the retroviral proteases. In computational drug design I used molecular modelling methods such as lead ex-pansion algorithm (Tripos®) to create a virtual library of compounds with different binding affinities to protease binding site. In addition, I heavily applied computer assisted combinato-rial chemistry approaches to design and optimize virtual libraries of protease inhibitors and performed in silico screening and pharmacophore-similarity scoring of these drug candidates. Further computational analyses revealed one unique compound with different protease bind-ing ability from the initial hit and its role for possible new class of protease inhibitors is dis-cussed (Shityakov and Dandekar, 2009). A number of atomistic models were developed to elucidate the nanotube behaviour in lipid bilayers. However, none of them provided useful information for CNT effect upon the lipid membrane bilayer for implementing all-atom models that will allow us to calculate the deviations of lipid molecules from CNT with atomistic precision. Unfortunately, the direct experimental investigation of nanotube behaviour in lipid bilayer remains quite a tricky prob-lem opening the door before the molecular simulation techniques. In this regard, more de-tailed multi-scale simulations are needed to clearly understand the stabilization characteristics of CNTs in hydrophobic environment. The phenomenon of an intercalated single-wall carbon nanotube in the center of lipid membrane was extensively studied and analyzed. The root mean square deviation and root mean square fluctuation functions were calculated in order to measure stability of lipid mem-branes. The results indicated that an intercalated carbon nanotube restrains the conformational freedom of adjacent lipids and hence has an impact on the membrane stabilization dynamics (Shityakov and Dandekar, 2011). On the other hand, different lipid membranes may have dissimilarities due to the differing abilities to create a bridge formation between the adherent lipid molecules. The results derived from this thesis will help to develop stable nanobiocom-posites for construction of novel biomaterials and delivery of various biomolecules for medi-cine and biology. N2 - Molekulare Modellierung und Simulationen sind leistungsstarke Methoden, um wich-tige Informationen von verschiedenen biologischen Systemen, welche nicht durch Experi-mente erschlossen werden können, darzustellen, und deren strukturelle und funktionelle Ei-genschaften aufzuklären. Diese Arbeit untersucht in Simulationen Interaktionen viraler Proteinen sowie von Kohlenstoffenanoröhren mit Membranen und Proteinen. Die HIV-1 Integrase besitzt Kernlokalisierungssignale („nuclear localization signals [NLS]“), welche eine entscheidende Rolle beim Import des viralen Präintegrationskomplexes („preintegration complex [PIC]“) in den Zellkern spielen. Die Ausbildung des PIC und sein Import in den Zellkern sind im Detail noch nicht bekannt. Es wurde bereits gezeigt, dass die NLS an Moleküle des Zelltransportsystems binden, wie z.B. an Transportinkernporen. Im Rahmen meiner Arbeit untersuchte ich die Interaktionen der viralen HIV-1 Integrase mit Proteinen der Kernporen wie dem Transportin-SR2 Protein (Shityakov et al., 2010). Hierbei wurden die möglichen Interaktionen des Transportin-SR2 Protein mit der HIV-1-Integrase und die Bedeutung dieser Interaktionen mit dem Import in den Kern aufgezeigt. Zudem wur-den die Interaktionen der Schlüsseldomänen und die Ausbildung von Wasserstoffbrücken-bindungen im dem Transportin-SR2 Protein untersucht. Die Ergebnisse wurden mit Protein-komplexen andere retroviralen Spezies, wie z.B. dem humanen Spumaretrovirus („human foamy virus [HFV]“), verglichen, um diesen spezifischen und sehr effizienten retroviralen Transportweg in die Wirtszelle zu entschlüsseln. Der experimentelle Teil dieser Arbeit beschäftigte sich damit, den retroviralen Kern-import zu untersuchen, um die Fähigkeit des Retrovirus, nicht teilende Zellen zu infizieren, besser zu verstehen verstanden wird. Um dies zu bewerkstelligen, müssen Retroviren Zellkul-turen in verschiedenen Stadien des Zellzyklus effizient transduzieren. Vielversprechende und sichere- HFV- Vektoren, welche in der Gentherapie eingesetzt werden könnten, sind nicht in der Lage, diese Effizienz bei ruhenden Zellen zu gewährleisten. Dies rührte daher, dass diese nicht in der Lage waren, einen PIC für den Transport der retroviralen DNA auszubilden. Lentivirale Vektoren sind dagegen nicht auf einen bestimmten Zellzyklus angewiesen. Für die reverse Transkription ist der Polypurinteil („polypurine tract [PPT]“) essentiell für die Ausbildung der PIC. In dieser Doktorarbeit vergleiche ich die Transduktionsfrequenz von PPT-modifizierten HFV-Vektoren mit denen von lentiviralen Vektoren in nichtteilenden und tei-lenden Lungenkarzinomepithelzellen. Hierbei wurden Methoden wie Klonierung, Transfektion, und Transduktion (wie auch weitere Methoden) angewendet. Im Gegensatz zu lentiviralen Vektoren konnten HFV-Vektoren sich nicht teilende Zellen in meinen Versuchen nicht effizient transduzieren (Shityakov und Rethwiln, unveröffentlicht). Trotz der Befunde, dass HFV-Vektoren sichere und effiziente Alternativen zu lentiviralen Vektoren darstellen, bestehen immer noch große Einschränkungen, diese HFV-basierten, retroviralen Vektoren für Gentherapien bei ruhenden Zellen einzusetzen. Viele Versuche wurden unternommen, um mögliche, vielversprechende Moleküle, welche als Wirkstoffe für eine HIV-Therapie eingesetzt werden könnten, zu finden. Diese Moleküle können aus chemischen Substanzbibliotheken bezogen werden oder am Computer in silico entworfen und dann synthetisiert werden. Digitalisierte Strukturen können als Refe-renzen benutzt werden, um besser herauszufinden, wie diese Moleküle Typen diverse Enzy-me blokieren könnten. Strukturbasiertes Wirkstoffdesign hat das Potential, viele Jahre und Geld an Entwicklungskosten einzusparen. Nachdem die Kristallstruktur der HIV-kodierten Proteasen aufgeklärt war, spielte das computergestützte Wirkstoffdesign eine zentrale Rolle bei der Entwicklung neuer Wirkstoffe gegen die Protease. Vielversprechende Vertreter dieser Wirkstoffklasse werden seit kurzem nun auch für die Behandlung von Patienten eingesetzt. Proteaseinhibitoren zeigen eine wir-kungsvolle und langanhaltende Inhibition der HIV-1-Replikation; besonders dann, wenn sie in Kombinationstherapien eingesetzt werden. Aber diese Wirkstoffe werden immer weniger effektiv, je resistenter die HIV-Stämme durch Mutationen in den retroviralen Proteasen wer-den. Im Rahmen meiner Arbeit mit computergestütztem Wirkstoffdesign nutzte ich Model-lierungsmethoden wie den „lead expansion algorithm“ (Tripos®) um virtuelle Wirkstoffbibli-otheken mit verschiedenen Affinitäten zur Proteasebindungsstelle zu erstellen. Zusätzlich wandte ich Verfahren der computergestützten, kombinatorischen Chemie an, um virtuelle Bibliotheken von Proteaseinhibitoren zu designen, und zu verbessern. Parallel dazu wurde eine in silico Selektion sowie eine Einteilung nach Pharmakophorähnlichkeiten für diese Kandidaten vorgenommen. Weiterführende computergestützte Analysen förderten einen ein-zigartigen Wirkstoff zu Tage, welcher neuartige Proteasebindungseigenschaften aufweist, und dessen Rolle für eine potentiell neuartige Klasse von Proteaseinhibitoren schon beschrieben wurde (Shityakov und Dandekar, 2009). Eine Reihe von Modellen mit atomarer Auflösung wurden bereits entwickelt, um das Verhalten von Nanoröhren in Lipid-Doppelschichten aufzuklären. Die Auswirkungen auf die molekular Dynamik einer einschichtigen Karbonnanoröhre, welche in das Zentrum einer Lipid-Doppelschicht eingefügt wurde, wurden intensiv studiert und analysiert. Die Normalabweichung und Fluktuationen wurden berechnet, um eine Aussage über die Stabilität der Lipid-Doppelschichten treffen zu können. Die Ergebnisse weisen darauf hin, dass eine eingefügte Karbonnanoröhre die Freiheit für Konformationsänderungen bei nahegelegenen Lipiden einschränkt und dadurch einen Einfluss auf die Membranstabilität hat (Shityakov und Dandekar, 2011). Es kann aber außer-dem sein, dass verschiedene Lipid-Doppelschichten Unterschiede in ihrer Fähigkeit, Brücken zwischen benachbarten Lipiden auszubilden, aufweisen. Viren und Karbonnanoröhren werden damit in verschiedenen dynamischen Simulati-onen untersucht, um mehr über ihre Interaktionen mit Proteinen und Membranen zu erfahren. KW - Kohlenstoff KW - Nanoröhre KW - Retroviren KW - Proteine KW - virale Proteine KW - retroviral proteins KW - nanobiocomposites Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-56960 ER -