TY - THES A1 - Kanbar, Farah T1 - Asymptotic and Stationary Preserving Schemes for Kinetic and Hyperbolic Partial Differential Equations T1 - Asymptotische und Stationäre Erhaltungsverfahren für Kinetische und Hyperbolische Partielle Differentialgleichungen N2 - In this thesis, we are interested in numerically preserving stationary solutions of balance laws. We start by developing finite volume well-balanced schemes for the system of Euler equations and the system of MHD equations with gravitational source term. Since fluid models and kinetic models are related, this leads us to investigate AP schemes for kinetic equations and their ability to preserve stationary solutions. Kinetic models typically have a stiff term, thus AP schemes are needed to capture good solutions of the model. For such kinetic models, equilibrium solutions are reached after large time. Thus we need a new technique to numerically preserve stationary solutions for AP schemes. We find a criterion for SP schemes for kinetic equations which states, that AP schemes under a particular discretization are also SP. In an attempt to mimic our result for kinetic equations in the context of fluid models, for the isentropic Euler equations we developed an AP scheme in the limit of the Mach number going to zero. Our AP scheme is proven to have a SP property under the condition that the pressure is a function of the density and the latter is obtained as a solution of an elliptic equation. The properties of the schemes we developed and its criteria are validated numerically by various test cases from the literature. N2 - In dieser Arbeit interessieren wir uns für numerisch erhaltende stationäre Lösungen von Erhaltungsgleichungen. Wir beginnen mit der Entwicklung von well-balanced Finite-Volumen Verfahren für das System der Euler-Gleichungen und das System der MHD-Gleichungen mit Gravitationsquell term. Da Strömungsmodelle und kinetische Modelle miteinander verwandt sind, untersuchen wir asymptotisch erhaltende (AP) Verfahren für kinetische Gleichungen und ihre Fähigkeit, stationäre Lösungen zu erhalten. Kinetische Modelle haben typischerweise einen steifen Term, so dass AP Verfahren erforderlich sind, um gute Lösungen des Modells zu erhalten. Bei solchen kinetischen Modellen werden Gleichgewichtslösungen erst nach langer Zeit erreicht. Daher benötigen wir eine neue Technik, um stationäre Lösungen für AP Verfahren numerisch zu erhalten. Wir finden ein Kriterium für stationär-erhaltende (SP) Verfahren für kinetische Gleichungen, das besagt, dass AP Verfahren unter einer bestimmten Diskretisierung auch SP sind. In dem Versuch unser Ergebnis für kinetische Gleichungen im Kontext von Strömungsmodellen nachzuahmen, haben wir für die isentropen Euler-Gleichungen ein AP Verfahren für den Grenzwert der Mach-Zahl gegen Null, entwickelt. Unser AP Verfahren hat nachweislich eine SP Eigenschaft unter der Bedingung, dass der Druck eine Funktion der Dichte ist und letztere als Lösung einer elliptischen Gleichung erhalten wird. Die Eigenschaften des von uns entwickelten und seine Kriterien werden anhand verschiedener Testfälle aus der Literatur numerisch validiert. N2 - In this thesis, we are interested in numerically preserving stationary solutions of balance laws. We start by developing finite volume well-balanced schemes for the system of Euler equations and the system of Magnetohydrodynamics (MHD) equations with gravitational source term. Since fluid models and kinetic models are related, this leads us to investigate Asymptotic Preserving (AP) schemes for kinetic equations and their ability to preserve stationary solutions. In an attempt to mimic our result for kinetic equations in the context of fluid models, for the isentropic Euler equations we developed an AP scheme in the limit of the Mach number going to zero. The properties of the schemes we developed and its criteria are validated numerically by various test cases from the literature. KW - Angewandte Mathematik KW - Hyperbolische Differentialgleichung KW - Kinetische Gleichung KW - Euler-Lagrange-Gleichung KW - Magnetohydrodynamische Gleichung KW - Euler equations KW - isentropic Euler equations KW - MHD equations KW - kinetic equations KW - well-balanced scheme KW - asymptotic preserving KW - stationary preserving KW - hyperbolic partial differential equations Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-301903 SN - 978-3-95826-210-2 SN - 978-3-95826-211-9 N1 - Parallel erschienen als Druckausgabe in Würzburg University Press, ISBN 978-3-95826-210-2, 29,80 EUR. PB - Würzburg University Press CY - Würzburg ET - 1. Auflage ER - TY - THES A1 - Berberich, Jonas Philipp T1 - Fluids in Gravitational Fields – Well-Balanced Modifications for Astrophysical Finite-Volume Codes T1 - Fluide in Gravitationsfeldern - Wohl-Balancierte Modifikationen für Astrophysikalische Finite-Volumen-Codes N2 - Stellar structure can -- in good approximation -- be described as a hydrostatic state, which which arises due to a balance between gravitational force and pressure gradient. Hydrostatic states are static solutions of the full compressible Euler system with gravitational source term, which can be used to model the stellar interior. In order to carry out simulations of dynamical processes occurring in stars, it is vital for the numerical method to accurately maintain the hydrostatic state over a long time period. In this thesis we present different methods to modify astrophysical finite volume codes in order to make them \emph{well-balanced}, preventing them from introducing significant discretization errors close to hydrostatic states. Our well-balanced modifications are constructed so that they can meet the requirements for methods applied in the astrophysical context: They can well-balance arbitrary hydrostatic states with any equation of state that is applied to model thermodynamical relations and they are simple to implement in existing astrophysical finite volume codes. One of our well-balanced modifications follows given solutions exactly and can be applied on any grid geometry. The other methods we introduce, which do no require any a priori knowledge, balance local high order approximations of arbitrary hydrostatic states on a Cartesian grid. All of our modifications allow for high order accuracy of the method. The improved accuracy close to hydrostatic states is verified in various numerical experiments. N2 - Die Struktur von Sternen kann in guter Näherung als hydrostatischer Zustandbeschrieben werden, der durch ein Gleichgewicht zwischen Gravitationskraft undDruckgradient gegeben ist. Hydrostatische Zustände sind statische Lösungen dervollständigen komprimierbaren Euler-Gleichungen mit Gravitationsquellenterm, diezur Modellierung des Sterninneren verwendet werden können. Um Simulationendynamischer Prozesse in Sternen durchführen zu können, ist es wichtig, dass dieverwendete numerische Methode den hydrostatischen Zustand über einen langenZeitraum genau aufrechterhalten kann. In dieser Arbeit stellen wir verschiedene Me-thoden vor, um astrophysikalische Finite-Volumen-Codes so zu modifizieren, dasssie diewell-balancing-Eigenschaft erhalten, d.h., dass sie keine signifikanten Diskre-tisierungsfehler nahe hydrostatischer Zustände verursachen. Unsere well-balancing-Modifikationen sind so konstruiert, dass sie die Anforderungen für Methoden er-füllen, die im astrophysikalischen Kontext angewendet werden: Sie können beliebi-ge hydrostatische Zustände mit jeder Zustandsgleichung, die zur Modellierung derthermodynamischen Beziehungen angewendet wird, balancieren und sind einfach invorhandene astrophysikalische Finite-Volumen-Codes zu implementieren. Eine un-serer well-balancing Modifikationen erhält bekannte Lösungen exakt und kann aufjede Gittergeometrie angewendet werden. Die anderen Methoden, für die keine A-priori-Kenntnisse erforderlich sind, balancieren lokale Approximationen beliebigerhydrostatischer Zustände mit hoher Fehlerordnung auf einem kartesischen Gitter.Alle unsere Modifikationen erlauben eine hohe Fehlerordnung der Methode. Dieverbesserte Genauigkeit nahe an hydrostatischen Zuständen wird in verschiedenennumerischen Experimenten verifiziert. KW - well-balancing KW - Euler equations KW - finite volume methods KW - Fluid KW - Gravitationsfeld KW - Finite-Volumen-Methode Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-219679 ER - TY - THES A1 - Barsukow, Wasilij T1 - Low Mach number finite volume methods for the acoustic and Euler equations T1 - Finite Volumen Methoden für den Grenzwert niedriger Machzahlen der akustischen und der Euler-Gleichungen N2 - Finite volume methods for compressible Euler equations suffer from an excessive diffusion in the limit of low Mach numbers. This PhD thesis explores new approaches to overcome this. The analysis of a simpler set of equations that also possess a low Mach number limit is found to give valuable insights. These equations are the acoustic equations obtained as a linearization of the Euler equations. For both systems the limit is characterized by a divergencefree velocity. This constraint is nontrivial only in multiple spatial dimensions. As the Jacobians of the acoustic system do not commute, acoustics cannot be reduced to some kind of multi-dimensional advection. Therefore first an exact solution in multiple spatial dimensions is obtained. It is shown that the low Mach number limit can be interpreted as a limit of long times. It is found that the origin of the inability of a scheme to resolve the low Mach number limit is the lack a discrete counterpart to the limit of long times. Numerical schemes whose discrete stationary states discretize all the analytic stationary states of the PDE are called stationarity preserving. It is shown that for the acoustic equations, stationarity preserving schemes are vorticity preserving and are those that are able to resolve the low Mach limit (low Mach compliant). This establishes a new link between these three concepts. Stationarity preservation is studied in detail for both dimensionally split and multi-dimensional schemes for linear acoustics. In particular it is explained why the same multi-dimensional stencils appear in literature in very different contexts: These stencils are unique discretizations of the divergence that allow for stabilizing stationarity preserving diffusion. Stationarity preservation can also be generalized to nonlinear systems such as the Euler equations. Several ways how such numerical schemes can be constructed for the Euler equations are presented. In particular a low Mach compliant numerical scheme is derived that uses a novel construction idea. Its diffusion is chosen such that it depends on the velocity divergence rather than just derivatives of the different velocity components. This is demonstrated to overcome the low Mach number problem. The scheme shows satisfactory results in numerical simulations and has been found to be stable under explicit time integration. N2 - Finite Volumen Methoden für die kompressiblen Euler-Gleichungen zeigen übermäßige Diffusion im Grenzwert kleiner Machzahlen. Diese Dissertation beschäftigt sich mit neuen Ansätzen, um dieses Problem zu beheben. Die Analyse eines Systems einfacherer Gleichungen, die ebenso einen Grenzwert niedriger Machzahlen haben, liefert wichtige Einsichten. Diese Gleichungen sind die als Linearisierung der Euler-Gleichungen erhaltenen akustischen Gleichungen. Für beide Gleichungssysteme ist der Grenzwert durch ein divergenzfreies Geschwindigkeitsfeld charakterisiert, was nur in mehreren Raumdimensionen nichttrivial ist. Da die Jacobi-Matrizen des akustischen Systems nicht vertauschen, kann Akustik nicht auf irgendeine Art mehrdimensionaler Advektion zurückgeführt werden. Deswegen wird zunächst eine exakte Lösung in mehreren Raumdimensionen gefunden. Es wird gezeigt, dass sich der Grenzwert kleiner Machzahlen als Grenzwert langer Zeiten interpretieren lässt. Als der Ursprung des Versagens eines Schemas im Grenzwert kleiner Machzahlen wird das Fehlen einer diskreten Entsprechung zum Grenzwert langer Zeiten identifiziert. Numerische Schemata, deren diskrete stationäre Zustände alle analytischen stationären Zustände diskretisieren, werden stationaritätserhaltend genannt. Es zeigt sich, dass für die akustischen Gleichungen stationaritätserhaltende Schemata vortizitätserhaltend sind, und gerade diejenigen sind, die auch den Grenzwert kleiner Machzahlen aufzulösen vermögen. Das zeigt eine neue Verbindung zwischen diesen drei Konzepten auf. Erhaltung der Stationarität wird für lineare Akustik im Detail für Schemata studiert, die nach Raumdimensionen aufgeteilt sind, und auch für multi-dimensionale Schemata. Insbesondere wird ein Grund geliefert, warum die gleichen multi-dimensionalen diskreten Operatoren in der Literatur in sehr unterschiedlichen Kontexten auftauchen: Sie sind Diskretisierungen der Divergenz, für die eine stabilisierende, stationaritätserhaltende Diffusion gefunden werden kann. Auch für nichtlineare Gleichungen, wie die Euler-Gleichungen, kann die Erhaltung der Stationarität verallgemeinert werden. Es werden dazu mehrere Wege der Konstruktion numerischer Schemata gezeigt. Insbesondere im Hinblick auf den Grenzwert kleiner Machzahlen wird ein neuartiges Schema hergeleitet, dessen Diffusion so gewählt ist, dass es von der Divergenz der Geschwindigkeit, und nicht bloß von irgendswelchen Ableitungen der Geschwindigkeitskomponenten abhängt. Es wird gezeigt, dass dieses Schema in der Lage ist, den Grenzwert kleiner Machzahlen aufzulösen. Das Schema zeigt zufriedenstellende Resultate in Simulationen und ist stabil unter Verwendung eines expliziten Zeitintegrators. KW - Finite-Volumen-Methode KW - Machzahl KW - finite volume method KW - Euler equations KW - Acoustic equations KW - low Mach number KW - vorticity preserving Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-159965 ER - TY - THES A1 - Gallego Valencia, Juan Pablo T1 - On Runge-Kutta discontinuous Galerkin methods for compressible Euler equations and the ideal magneto-hydrodynamical model T1 - Runge-Kutta Discontinuous-Galerkin Verfahren für die kompressiblen Euler Gleichungen und das ideale magnetohydrodynamische Modell N2 - An explicit Runge-Kutta discontinuous Galerkin (RKDG) method is used to device numerical schemes for both the compressible Euler equations of gas dynamics and the ideal magneto- hydrodynamical (MHD) model. These systems of conservation laws are known to have discontinuous solutions. Discontinuities are the source of spurious oscillations in the solution profile of the numerical approximation, when a high order accurate numerical method is used. Different techniques are reviewed in order to control spurious oscillations. A shock detection technique is shown to be useful in order to determine the regions where the spurious oscillations appear such that a Limiter can be used to eliminate these numeric artifacts. To guarantee the positivity of specific variables like the density and the pressure, a positivity preserving limiter is used. Furthermore, a numerical flux, proven to preserve the entropy stability of the semi-discrete DG scheme for the MHD system is used. Finally, the numerical schemes are implemented using the deal.II C++ libraries in the dflo code. The solution of common test cases show the capability of the method. N2 - Ein explizite Runge-Kutta discontinous Galerkin (RKDG) Verfahren wird angewendet, um numerische Diskretisierungen, sowohl für die kompressiblen Eulergleichungen der Gasdynamik, als auch für die idealen Magnetohydrodynamik (MHD) Gleichungen zu entwickeln. Es ist bekannt, dass diese System von Erhaltungsgleichungen unstetige Lösungen besitzen. Unstetigkeiten sind die Quelle von störenden Oszillationen im Lösungsprofil der numerischen Näherung, wenn ein numerisches Verfahren von hoher Ordnung verwendet wird. Verschiedene Techniken werden miteinander verglichen um störende Oszillationen zu kontrollieren, die bei der Approximation von Unstetigkeiten in der Lösung auftreten. Ein Verfahren zur Lokalisierung von Schockwellen wird vorgestellt und es wird gezeigt, dass dieses Verfahren nützlich ist um Regionen, in denen störende Oszillationen auftreten, zu bestimmen, so dass ein Limiter verwendet werden kann um diese numerischen Artefakte zu eliminieren. Um die Positivität spezieller Variablen, wie die Dichte und den Druck, zu bewahren, wird ein spezieller „positivitätserhaltender“ Limiter verwendet. Des Weiteren wird ein numerischer Fluss, für den bewiesenermaßen das semi-diskrete DG Verfahren für das MHD System Entropie-Stabil ist, verwendet. Abschließend werden die numerischen Verfahren unter Verwendung der deal.II C++ Bibliotheken im dflo code implementiert. Simulationen bekannter Testbeispiele zeigen das Potential dieses numerischen Verfahrens. KW - explicit discontinuous Galerkin KW - conservation laws KW - numerical methods KW - Euler equations KW - MHD KW - Eulersche Differentialgleichung KW - Galerkin-Methode KW - Numerisches Verfahren Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148874 ER -