TY - THES A1 - Hör, Jens T1 - Discovery of RNA/protein complexes by Grad-seq T1 - Ermittlung von RNA/Protein-Komplexen mittels Grad-seq N2 - Complex formation between macromolecules constitutes the foundation of most cellular processes. Most known complexes are made up of two or more proteins interacting in order to build a functional entity and therefore enabling activities which the single proteins could otherwise not fulfill. With the increasing knowledge about noncoding RNAs (ncRNAs) it has become evident that, similar to proteins, many of them also need to form a complex to be functional. This functionalization is usually executed by specific or global RNA-binding proteins (RBPs) that are specialized binders of a certain class of ncRNAs. For instance, the enterobacterial global RBPs Hfq and ProQ together bind >80 % of the known small regulatory RNAs (sRNAs), a class of ncRNAs involved in post-transcriptional regulation of gene expression. However, identification of RNA-protein interactions so far was performed individually by employing low-throughput biochemical methods and thereby hindered the discovery of such interactions, especially in less studied organisms such as Gram-positive bacteria. Using gradient profiling by sequencing (Grad-seq), the present thesis aimed to establish high-throughput, global RNA/protein complexome resources for Escherichia coli and Streptococcus pneumoniae in order to provide a new way to investigate RNA-protein as well as protein-protein interactions in these two important model organisms. In E. coli, Grad-seq revealed the sedimentation profiles of 4,095 (∼85 % of total) transcripts and 2,145 (∼49 % of total) proteins and with that reproduced its major ribonucleoprotein particles. Detailed analysis of the in-gradient distribution of the RNA and protein content uncovered two functionally unknown molecules—the ncRNA RyeG and the small protein YggL—to be ribosomeassociated. Characterization of RyeG revealed it to encode for a 48 aa long, toxic protein that drastically increases lag times when overexpressed. YggL was shown to be bound by the 50S subunit of the 70S ribosome, possibly indicating involvement of YggL in ribosome biogenesis or translation of specific mRNAs. S. pneumoniae Grad-seq detected 2,240 (∼88 % of total) transcripts and 1,301 (∼62 % of total) proteins, whose gradient migration patterns were successfully reconstructed, and thereby represents the first RNA/protein complexome resource of a Gram-positive organism. The dataset readily verified many conserved major complexes for the first time in S. pneumoniae and led to the discovery of a specific interaction between the 3’!5’ exonuclease Cbf1 and the competence-regulating ciadependent sRNAs (csRNAs). Unexpectedly, trimming of the csRNAs by Cbf1 stabilized the former, thereby promoting their inhibitory function. cbf1 was further shown to be part of the late competence genes and as such to act as a negative regulator of competence. N2 - Makromoleküle, die Komplexe bilden, sind die Grundlage der meisten zellulären Prozesse. Die meisten bekannten Komplexe bestehen aus zwei oder mehr Proteinen, die interagieren, um eine funktionelle Einheit zu bilden. Diese Interaktionen ermöglichen Funktionen, die die einzelnen Proteine nicht erfüllen könnten. Wachsende wissenschaftliche Erkenntnisse über nichtkodierende RNAs (ncRNAs) haben gezeigt, dass, analog zu Proteinen, auch viele ncRNAs Komplexe bilden müssen, um ihre Funktionen ausüben zu können. Diese Funktionalisierung wird normalerweise von spezifischen oder globalen RNA-bindenden Proteinen (RBPs), die auf eine bestimmte Klasse an ncRNAs spezialisiert sind, durchgeführt. So binden beispielsweise die in Enterobakterien verbreiteten globalen RBPs Hfq und ProQ zusammen >80 % der bekannten kleinen regulatorischen RNAs (sRNAs)—eine Klasse der ncRNAs, die in die posttranskriptionelle Genexpressionsregulation involviert ist. RNA-Protein-Interaktionen wurden bisher anhand einzelner Moleküle und mithilfe von biochemischen Methoden mit niedrigem Durchsatz identifiziert, was die Entdeckung solcher Interaktionen erschwert hat. Dies gilt insbesondere für Organismen, die seltener Gegenstand der Forschung sind, wie beispielsweise grampositive Bakterien. Das Ziel dieser Doktorarbeit war es, mittels gradient profiling by sequencing (Grad-seq) globale Hochdurchsatzkomplexomdatensätze der RNA-ProteinInteraktionen in Escherichia coli und Streptococcus pneumoniae zu generieren. Diese Datensätze ermöglichen es auf eine neue Art und Weise RNA-Protein- und ProteinProtein-Interaktionen in diesen wichtigen Modellorganismen zu untersuchen. Die E. coli Grad-seq-Daten beinhalten die Sedimentationsprofile von 4095 Transkripten (∼85 % des Transkriptoms) und 2145 Proteinen (∼49 % des Proteoms), mit denen die wichtigsten Ribonukleoproteine reproduziert werden konnten. Die detaillierte Analyse der Verteilung von RNAs und Proteinen im Gradienten zeigte, dass zwei Moleküle, deren Funktionen bisher unbekannt waren—die ncRNA RyeG und das kleine Protein YggL—ribosomenassoziiert sind. Durch weitere Charakterisierung konnte gezeigt werden, dass RyeG für ein toxisches Protein mit einer Länge von 48 Aminosäuren kodiert, das bei Überexpression die Latenzphase drastisch verlängert. Für YggL konnte eine Interaktion mit der 50S Untereinheit von 70S Ribosomen nachgewiesen werden, was auf eine potenzielle Funktion in der Biogenese von Ribosomen oder bei der Translation bestimmter mRNAs hindeutet. Die S. pneumoniae Grad-seq Daten beinhalten 2240 Transkripte (∼88 % des Transkriptoms) und 1301 Proteine (∼62 % des Proteoms), deren Migrationsprofile im Gradienten erfolgreich rekonstruiert werden konnten. Dieser RNA/ProteinKomplexomdatensatz eines grampositiven Organismus ermöglichte erstmalig die Verifizierung der wichtigsten konservierten Komplexe von S. pneumoniae. Weiterhin konnte eine spezifische Interaktion der 3’!5’-Exonuklease Cbf1 mit den ciadependent sRNAs (csRNAs), die an der Regulation von Kompetenz beteiligt sind, nachgewiesen werden. Überraschenderweise stabilisiert das von Cbf1 durchgeführte Kürzen der csRNAs die selbigen, was deren inhibitorische Funktion unterstützt. Darüber hinaus konnte gezeigt werden, dass cbf1 eines der späten Kompetenzgene ist und als solches als negativer Regulator der Kompetenz agiert. KW - Multiproteinkomplex KW - RNS-Bindungsproteine KW - RNS KW - Escherichia coli KW - Streptococcus pneumoniae KW - Complexome KW - RNA-binding protein KW - RNA KW - Escherichia coli KW - Streptococcus pneumoniae KW - Grad-seq KW - Bacteria Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-211811 ER - TY - THES A1 - Förtsch, Christina T1 - Pneumolysin: the state of pore-formation in context to cell trafficking and inflammatory responses of astrocytes T1 - Pneumolysin: Einfluss der Porenbildung auf zelluläre Transportprozesse und inflammatorische Antworten in Astrozyten N2 - Pneumolysin, a protein toxin, represents one of the major virulence factors of Streptococcus pneumoniae. This pathogen causes bacterial meningitis with especially high disease rates in young children, elderly people and immunosuppressed patients. The protein toxin belongs to the family of cholesterol-dependent cytolysins, which require membrane cholesterol in order to bind and to be activated. Upon activation, monomers assemble in a circle and undergo conformational change. This conformational change leads to the formation of a pore, which eventually leads to cell lysis. This knowledge was obtained by studies that used a higher concentration compared to the concentration of pneumolysin found in the cerebrospinal fluid of meningitis patients. Thus, a much lower concentration of pneumolysin was used in this work in order to investigate effects of this toxin on primary mouse astrocytes. Previously, a small GTPase activation, possibly leading to cytoskeletal changes, was found in a human neuroblastoma cell line. This led to the hypothesis that pneumolysin can lead to similar cytoskeletal changes in primary cells. The aim of this work was to investigate and characterise the effects of pneumolysin on primary mouse astrocytes in terms of a possible pore formation, cellular trafficking and immunological responses. Firstly, the importance of pore-formation on cytoskeletal changes was to be investigated. In order to tackle this question, wild-type pneumolysin and two mutant variants were used. One variant was generated by exchanging one amino acid in the cholesterol recognising region, the second variant was generated by deleting two amino acids in a protein domain that is essential for oligomerisation. These variants should be incapable of forming a pore and were compared to the wild-type in terms of lytic capacities, membrane binding, membrane depolarisation, pore-formation in artificial membranes (planar lipid bilayer) and effects on the cytoskeleton. These investigations resulted in the finding that the pore-formation is required for inducing cell lysis, membrane depolarisation and cytoskeletal changes in astrocytes. The variants were not able to form a pore in planar lipid bilayer and did not cause cell lysis and membrane depolarisation. However, they bound to the cell membrane to the same extent as the wild-type toxin. Thus, the pore-formation, but not the membrane binding was the cause for these changes. Secondly, the effect of pneumolysin on cellular trafficking was investigated. Here, the variants showed no effect, but the wild-type led to an increase in overall endocytotic events and was itself internalised into the cell. In order to characterise a possible mechanism for internalisation, a GFP-tagged version of pneumolysin was used. Several fluorescence-labelled markers for different endocytotic pathways were used in a co-staining approach with pneumolysin. Furthermore, inhibitors for two key-players in classical endocytotic pathways, dynamin and myosin II, were used in order to investigate classical endocytotic pathways and their possible involvement in toxin internalisation. The second finding of this work is that pneumolysin is taken up into the cell via dynamin- and caveolin-independent pinocytosis, which could transfer the toxin to caveosomes. From there, the fate of the toxin remains unknown. Additionally, pneumolysin leads to an overall increase in endocytotic events. This observation led to the third aim of this work. If the toxin increases the overall rate of endocytosis, the question arises whether toxin internalisation favours bacterial tissue penetration of the host or whether it serves as a defence mechanism of the cell in order to degrade the protein. Thus, several proinflammatory cytokines were investigated, as previous studies describe an effect of pneumolysin on cytokine production. Surprisingly, only interleukin 6-production was increased after toxin-treatment and no effect of endocytotic inhibitors on the interleukin 6-production was observed. The conclusion from this finding is that pneumolysin leads to an increase of interleukin 6, which would not depend on the endocytotic uptake of pneumolysin. The production of interleukin 6 would enhance the production of acute phase proteins, T-cell activation, growth and differentiation. On the one hand, this activation could serve pathogen clearance from infected tissue. On the other hand, the production of interleukin 6 could promote a further penetration of pathogen into host tissue. This question should be further investigated. N2 - Das Protein-Toxin Pneumolysin ist einer der entscheidenden Virulenzfaktoren von Streptococcus pneumoniae. Dieses Protein-Toxin gehört zur Familie der cholesterinabhängigen Zytolysine, die Membrancholesterol für ihre Aktivierung und Bindung benötigen. Nach der Membranbindung ordnen sich die Toxinmonomere kreisförmig an und ändern ihre Konformation, wodurch eine Pore entsteht, die dann zu einer Lyse der Zelle führt. Vor kurzem wurde nach Pneumolysinbehandlung in einer humanen Neuroblastomzelllinie eine Aktivierung kleiner GTPasen gefunden, die für zytoskelettale Veränderungen entscheidend sind (z.B. Zellbewegungen). Deshalb wurde die Hypothese aufgestellt, dass Pneumolysin diese zytoskelettalen Veränderungen auch in primären neuronalen Zellen auslösen könnte. Das Ziel dieser Arbeit war, die Effekte von Pneumolysin auf primäre Mausastrozyten im Hinblick auf Porenbildung, zelluläre Transportprozesse und immunologische Antworten zu untersuchen. Im ersten Teil wird die Bedeutung der Porenbildung auf zytoskelettale Veränderungen untersucht. Hierbei wurden lytische Fähigkeiten, Membranbindung, Membrandepolarisation, Porenbildung im künstlichen Bilayer und Effekte auf das Zytoskelett untersucht. Sowohl der Wildtyp als auch die Varianten zeigten die gleiche Stärke an Membranbindung. Diese Untersuchungen weisen darauf hin, dass die Porenbildung für die Zell-Lyse, Membrandepolarisation und zytoskelettale Veränderungen in Mausastrozyten wichtig ist und führt zu der Schlussfolgerung, dass nicht die Membranbindung, sondern die Porenbildung entscheidend für die beobachteten zytoskelettalen Veränderungen ist. Im zweiten Teil dieser Arbeit wurde der Effekt des Pneumolysin auf zelluläre Transportprozesse untersucht. Erneut zeigten die Pneumolysinvarianten keine Wirkung, während der Wildtyp die Gesamtrate der Endozytose erhöhte. Weiterhin wurde nur der Wildtyp internalisiert. Um einen möglichen Mechanismus für die Internalisierung des Toxins vorschlagen zu können, wurde Pneumolysin als GFP-markiertes Toxin genutzt. Weiterhin wurden einige Marker für unterschiedliche endozytotische Transportprozesse genutzt um eine Ko-lokalisation mit Pneumolysin-GFP zu ermöglichen. Des Weiteren wurden Inhibitoren für zwei Schlüsselproteine endozytotischer Vorgänge, Dynamin und Myosin II, genutzt. Die Ergebnisse dieser Untersuchungen zeigten, dass Pneumolysin wahrscheinlich durch dynamin- und caveolin-unabhängige Pinozytose in die Zelle aufgenommen wird. Dieser Mechanismus führt zu der Bildung von Caveosomen, deren weiterer Transport, und somit das Schicksal des internalisierten Toxins, bis heute noch nicht aufgeklärt ist. Die Beobachtung, dass Pneumolysin die Gesamtrate an Endozytose erhöht, führte zum dritten Teil dieser Arbeit. Wenn das Toxin die Gesamtrate an Endozytose erhöht, stellt sich die Frage, ob dieser Vorgang der Zerstörung des Toxins – also einer Abwehr der Zelle – dient, oder ob diese Internalisierung eine Strategie des Pathogens ist, um tiefer in das Wirtsgewebe einzudringen. Aktuelle Studien belegen, dass Pneumolysin einen Einfluss auf inflammatorische Antworten des Immunsystems hat. Aus diesem Grund wurden unterschiedliche proinflammatorische Zytokine untersucht. Überraschenderweise zeigte sich nur eine Erhöhung des Interleukin 6 nach der Toxinbehandlung. Weiterhin hatten die Endozytoseinhibitoren keinen Effekt auf die Produktion dieses proinflammatorischen Zytokins. Pneumolysin führt also zu einem Anstieg der Interleukin 6 Produktion, diese Produktion ist jedoch unabhängig von der Internalisierung dieses Toxins. Die Produktion dieses Interleukins würde zur Produktion der Akute-Phase Proteine, der Aktivierung der T-Zell Antwort, zu Wachstum und Zelldifferenzierung führen. Einerseits könnte diese Aktivierung die Infektion durch das Pathogen bekämpfen. Andererseits könnte S. pneumoniae die erhöhte Produktion durch PLY an Interleukin 6 nutzen um weiter in das Wirtsgewebe vordringen zu können. Diese Frage sollte noch durch weitere Experimente untersucht werden. KW - Streptococcus pneumoniae KW - Toxin KW - Hirnhautentzündung KW - Entzündung KW - Astrozyt KW - Pore KW - Pneumolysin KW - Meningitis KW - Inflammation KW - Zelltransport KW - Porenbildung KW - Pneumolysin KW - Meningitis KW - Inflammation KW - cellular-trafficking KW - Pore-formation Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-70892 ER - TY - THES A1 - Agarwal, Vaibhav T1 - Role of PspC interaction with human polymeric immunoglobulin receptor and Factor H in Streptococcus pneumoniae infections and host cell induced signalling N2 - Streptococcus pneumoniae ist ein Gram-positives Bakterium und ein Kommensale des humanen Nasenrachenraums. Pneumokokken sind andererseits auch die Verursacher schwerer lokaler Infektionen wie der Otitis media, Sinusitis und von lebensbedrohenden invasiven Erkrankungen. So sind Pneumokokken die wichtigsten Erreger einer ambulant erworbenen Pneumonie und sie sind häufige Verursacher von Septikämien und bakteriellen Meningitiden. Die initiale Phase der Pathogenese ist verbunden mit der Besiedelung der mukosalen Epithelzellen des Rachenraumes. Diese Kolonisierung erleichtert die Aufnahme der Bakterien in die Zelle bzw. deren Dissemination in submukosale Bereiche und den Blutstrom. Die Konversion des Kommensalen zu einem invasiven Mikroorganismus ist assoziiert mit der Anpassung des Krankheitserregers an die verschiedenen Wirtsnischen und wird auf der Wirtsseite durch die Zerstörung der transepithelialen Barriere begleitet. Die Anpassung des Erregers ist vermutlich ein in hohem Grade regulierter Prozess. Die Oberfläche von Streptococcus pneumoniae ist mit Proteinen bedeckt, die kovalent oder nicht kovalent mit der Zellwand verknüpft sind. Eine einzigartige Gruppe von Oberflächenproteinen in der Zellwand der Pneumokokken sind die cholinbindenden Proteine (CBPs). Für einige der CBPs konnte bereits die Bedeutung für die Virulenz gezeigt werden. PspC, auch als SpsA oder CbpA bezeichnet, ist ein multifunktionales Oberflächenprotein, das als Adhesin und Faktor H-Bindungsprotein eine wichtige Rolle in der Pathogenese der Pneumokokken hat. PspC vermittelt als Adhesin die Anheftung der Bakterien an die mukosalen Epithelzellen, indem es human-spezifisch an die sekretorische Komponente (SC) des polymeren Immunoglobulinrezeptors (pIgR) bindet. SC ist die Ektodomäne des pIgR und PspC kann ebenso die freie SC binden oder an die SC des sekretorischen IgA Moleküls binden. PspC interagiert auch mit dem löslichen Komplement Faktor H. Die SC und der Faktor erkennen zwei verschiedene Epitope im bakteriellen PspC Protein. Der genaue Mechanismus der jeweiligen Interaktionen unter physiologischen- bzw. wirtspezifischen Bedingungen ist noch nicht vollständig verstanden. In dieser Arbeit wurde die Auswirkung der PspC Interaktion mit dem humanen pIgR (hpIgR) bzw. dem Faktor H auf die Virulenz der Pneumokokken und die Wirtszellantwort, d.h. die induzierten Signalkaskaden in den eukaryotischen Zellen untersucht. Die molekulare Analyse und die Verwendung von spezifischen pharmakologischen Inhibitoren der Signalmoleküle zeigten, dass verschiedene Signalmoleküle an der PspC-pIgR vermittelten Internalisierung beteiligt sind. Die Aktivierung, d.h. die Phosphorylierung der Signalmoleküle wurde in Immunblots demonstriert. Die Studien zeigten, dass das Aktinzytoskelett und die Mikrotubuli für die bakterielle Aufnahme essentiell sind. Es konnte auch zum ersten Mal nachgewiesen werden, dass Cdc42 die entscheidende GTPase für die Invasion der Pneumokokken in die Wirtsepithelzellen, vermittelt über den PspC-hpIgR Mechanismus, ist. Der Einsatz von PI3-kinase und Akt Kinase Inhibitoren reduzierte signifikant die hpIgR-vermittelte Aufnahme der Pneumokokken in die Wirtszelle. Zusätzlich durchgeführte Infektionen von hpIgR exprimierenden Zellen zeigten eine zeitabhängige Phosphorylierung von Akt und der p85α Untereinheit der PI3-Kinase. Damit ist neben der GTPase Cdc42 der PI3K und Akt Signalweg entscheidend für die PspC-pIgR vermittelte Invasion der Pneumokokken. Des Weiteren sind an der Infektion mit Pneumokokken auch die Protein Tyrosin Kinasen Src, ERK1/2 und JNK beteiligt. Dabei wird die Src Kinase unabhängig von der PI3K in hpIgR exprimierenden Zellen aktiviert. Inhibitionsexperimente und genetische Knockdown Versuche mit siRNA bewiesen, dass die Endozytose der Pneumokokken über PspC-pIgR ein Clathrin und Dynamin abhängiger Mechanismus ist. Im weiterenn Teil der Arbeit wurde der Einfluss des PspC gebundenen Faktor H auf die Anheftung an und Invasion in die Epithelzellen analysiert. Die Bindung von Faktor H erfolgte unabhängig vom PspC-Subtyp. Die Bindungsversuche bewiesen, dass die Kapselmenge negativ korreliert mit der Bindung des Faktor H. Der Einsatz von Faktor H aus Maus oder Ratte zeigte keine typische Bindung. Daraus kann abgeleitet werden, dass diese Interaktion humanspezifisch ist. Die Infektionsexperimente demonstrierten, dass Faktor H die Adhärenz und die Invasion der Bakterien in die Nasenrachenraumzellen (Detroit562), alveolären Lungenepithelzellen (A549) und humanen Hirnendothelzellen (HBMEC) steigert. Der Faktor H hat Heparin Bindestellen. Diese Bindestellen vermitteln die Adhärenz der Faktor H gebundenen Pneumokokken mit Epithelzellen. Inhibitionsstudien mit spezifischen monoklonalen Antikörpern, die gegen die short consensus repeats (SCRs) von Faktor H gerichtet waren, konnten die essentielle Bedeutung der SCR19-20 für die Anheftung der Pneumokokken über Faktor H an die Wirtszellen nachweisen. Die Faktor H vermittelte Assoziation der Pneumokokken an polymorphonukleäre Leukozyten (PMNs) erfolgt über das Integrin CD11b/CD18. Die weiteren Inhibitionsstudien zeigten dann auch zum ersten Mal den Einfluss des Aktinzytoskeletts der Wirtszelle auf die Faktor H-vermittelten bakterieller Internalisierung und den dabei bedeutsamen Signaltransduktionswegen in der eukaryotischen Zelle. Dabei wurden insbesondere die Proteintyrosinkinasen und die PI3K als wichtige Signalmoleküle für die Faktor H vermittelte Invasion der Pneumokokken identifiziert. Die in dieser Arbeit erhaltenen Resultate belegen, dass die Faktor H vermittelte Infektion der Zellen mit S. pneumoniae ein konzertierter Mechanismus ist, bei dem Oberflächen-Glycosaminoglycane, Integrine und Signaltransduktionswege der Wirtsepithelzellen involviert sind. Des Weiteren wurde aufgezeigt, dass die PspC-pIgR-vermittelte Invasion in mukosale Epithelzellen unterschiedliche Signalwege wie z.B. den PI3K und Akt Weg induziert und abhängig von Cdc42 und einer Clathrin vermittelten Endozytosemechanismus ist. N2 - Streptococcus pneumoniae (pneumococci) are Gram-positive bacteria and commensals of the nasopharyngeal cavity. Besides colonization, pneumococci are responsible for severe local infections such as otitis media, sinusitis and life-threatening invasive diseases, including pneumonia, sepsis and meningitis. The surface of pneumococci is decorated with proteins that are covalently or non-covalently anchored to the cell wall. The most unique group of cell wall associated proteins in pneumococci are the choline-binding proteins (CBPs). PspC, also known as SpsA or CbpA, is a multifunctional choline-binding protein that plays an essential role in pneumococcal pathogenesis by functioning as an adhesin. PspC promotes adherence of pneumococci to mucosal epithelial cells by interacting in a human specific manner with the free secretory component (SC) or to SC as part of the secretory IgA (SIgA) or polymeric immunoglobulin receptor (pIgR). PspC also interacts specifically with the soluble complement Factor H. Apparently, PspC uses two different epitopes for binding the soluble host protein Factor H and SC of pIgR. However, the mechanism by which these independent interactions facilitate pneumococcal infections under physiological and host specific conditions have not yet been completely elucidated. This study aims to explore the impact of the PspC interaction with human pIgR (hpIgR) or complement regulator Factor H on pneumococcal virulence. Here the cellular and molecular basis of PspC-mediated adherence to and invasion of host epithelial and endothelial cells was demonstrated. The genetic approach, specific pharmacological inhibitors and immunoblot analysis demonstrated the complexity of the induced signal transduction pathways during PspC-hpIgR mediated pneumococcal uptake by host cells. Inhibition studies with specific inhibitors of actin cytoskeleton and microtubules demonstrated that the dynamics of host cell cytoskeleton are essential for pneumococcal uptake by mucosal epithelial cells. Moreover, this study reports for the first time that the small GTPase Cdc42 is essential for pneumococcal internalization into epithelial cells via the PspC-hpIgR mechanism. In addition, in infection experiments performed in presence of specific inhibitors of PI3-kinase/Akt and protein tyrosine kinase (PTKs), hpIgR-mediated pneumococcal uptake by host cells was significantly blocked. Amongst PTKs the Src kinase pathway, ERK1/2 and JNK pathways were implicated during pneumococcal ingestion by hpIgR expressing cells. In addition, inhibition experiments performed in the presence of individual inhibitors or with a combination of inhibitors suggested the independent activation of PI3-kinase/Akt and Src kinase pathways during pneumococcal infections of hpIgR expressing cells. By employing specific inhibitors and siRNA in cell culture infection experiments it was further demonstrated that pneumococcal endocytosis by host epithelial cells via the PspC-hpIgR mechanism depends on clathrin and dynamin. PspC recruits also Factor H to the pneumococcal cell surface. Consequently, the impact of pneumococcal cell surface bound Factor H on adherence to host cells and the molecular mechanism facilitating the uptake of Factor H bound pneumococci by epithelial cells was investigated. Flow cytometry and immunoblots revealed that S. pneumoniae has evolved the ability to recruit both purified Factor H as well as Factor H from human plasma or serum. Moreover, it was demonstrated that the recruitment of Factor H is independent of the PspC-subtypes and that capsular polysaccharide (CPS) interferes with its recruitment. Factor H bound to pneumococci significantly increased bacterial attachment to and invasion of host epithelial cells including nasopharyngeal cells (Detroit562), lung epithelial cells (A549), and human brain-derived endothelial cells (HBMEC). Blocking experiments demonstrated that bacteria bound Factor H interacts via the heparin binding sites on Factor H with eukaryotic cell surface glycosaminoglycans and that this interaction promotes pneumococcal adherence to host cells. In addition, inhibition studies with mAbs recognizing specifically different short consensus repeats (SCR) of Factor H suggested that SCR 19-20 of Factor H are essential for the pneumococcal interaction with host epithelial cells via Factor H. In the presence of Factor H, attachment of pneumococci to human polymorphonuclear leukocytes (PMNs) is enhanced. The integrin CD11b/CD18 was identified as the cellular receptor on PMNs. By using pharmacological inhibitors the impact of host cell cytoskeleton and signalling molecules, such as PTKs and PI3-kinase, for Factor H-mediated pneumococcal internalization into eukaryotic cells was shown. Taken together, the results revealed that Factor-H mediated pneumococcal infection requires a concerted role of host epithelial cell surface glycosaminoglycans, integrins and host cell signalling pathways. KW - Streptococcus pneumoniae KW - Polymeric Immunoglobulin receptor KW - Factor H Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-36526 ER -