TY - JOUR A1 - Vogt, Marius A1 - Girschick, Hermann A1 - Schweitzer, Tilmann A1 - Benoit, Clemens A1 - Holl-Wieden, Annette A1 - Seefried, Lothar A1 - Jakob, Franz A1 - Hofmann, Christine T1 - Pediatric hypophosphatasia: lessons learned from a retrospective single-center chart review of 50 children JF - Orphanet Journal of Rare Diseases N2 - Background Hypophosphatasia (HPP) is a rare, inherited metabolic disorder caused by loss-of-function mutations in the ALPL gene that encodes the tissue-nonspecific alkaline phosphatase TNAP (ORPHA 436). Its clinical presentation is highly heterogeneous with a remarkably wide-ranging severity. HPP affects patients of all ages. In children HPP-related musculoskeletal symptoms may mimic rheumatologic conditions and diagnosis is often difficult and delayed. To improve the understanding of HPP in children and in order to shorten the diagnostic time span in the future we studied the natural history of the disease in our large cohort of pediatric patients. This single centre retrospective chart review included longitudinal data from 50 patients with HPP diagnosed and followed at the University Children's Hospital Wuerzburg, Germany over the last 25 years. Results The cohort comprises 4 (8%) perinatal, 17 (34%) infantile and 29 (58%) childhood onset HPP patients. Two patients were deceased at the time of data collection. Diagnosis was based on available characteristic clinical symptoms (in 88%), low alkaline phosphatase (AP) activity (in 96%), accumulating substrates of AP (in 58%) and X-ray findings (in 48%). Genetic analysis was performed in 48 patients (31 compound heterozygous, 15 heterozygous, 2 homozygous mutations per patient), allowing investigations on genotype-phenotype correlations. Based on anamnestic data, median age at first clinical symptoms was 3.5 months (min. 0, max. 107), while median time to diagnosis was 13 months (min. 0, max. 103). Common symptoms included: impairment of motor skills (78%), impairment of mineralization (72%), premature loss of teeth (64%), musculoskeletal pain and craniosynostosis (each 64%) and failure to thrive (62%). Up to now 20 patients started medical treatment with Asfotase alfa. Conclusions Reported findings support the clinical perception of HPP being a chronic multi-systemic disease with often delayed diagnosis. Our natural history information provides detailed insights into the prevalence of different symptoms, which can help to improve and shorten diagnostics and thereby lead to an optimised medical care, especially with promising therapeutic options such as enzyme-replacement-therapy with Asfotase alfa in mind. KW - hypophosphatasia KW - alkaline phosphatase KW - asfotase alfa KW - rare bone disease KW - osteomalacia KW - rickets Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-230505 VL - 15 ER - TY - JOUR A1 - Liedtke, Daniel A1 - Hofmann, Christine A1 - Jakob, Franz A1 - Klopocki, Eva A1 - Graser, Stephanie T1 - Tissue-Nonspecific Alkaline Phosphatase—A Gatekeeper of Physiological Conditions in Health and a Modulator of Biological Environments in Disease JF - Biomolecules N2 - Tissue-nonspecific alkaline phosphatase (TNAP) is a ubiquitously expressed enzyme that is best known for its role during mineralization processes in bones and skeleton. The enzyme metabolizes phosphate compounds like inorganic pyrophosphate and pyridoxal-5′-phosphate to provide, among others, inorganic phosphate for the mineralization and transportable vitamin B6 molecules. Patients with inherited loss of function mutations in the ALPL gene and consequently altered TNAP activity are suffering from the rare metabolic disease hypophosphatasia (HPP). This systemic disease is mainly characterized by impaired bone and dental mineralization but may also be accompanied by neurological symptoms, like anxiety disorders, seizures, and depression. HPP characteristically affects all ages and shows a wide range of clinical symptoms and disease severity, which results in the classification into different clinical subtypes. This review describes the molecular function of TNAP during the mineralization of bones and teeth, further discusses the current knowledge on the enzyme’s role in the nervous system and in sensory perception. An additional focus is set on the molecular role of TNAP in health and on functional observations reported in common laboratory vertebrate disease models, like rodents and zebrafish. KW - TNAP KW - hypophosphatasia KW - HPP KW - zebrafish KW - mineralization KW - ALPL KW - craniosynostosis KW - teeth KW - nervous system Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-220096 SN - 2218-273X VL - 10 IS - 12 PB - MDPI ER -