TY - THES A1 - Bathon, Kerstin T1 - Mutations in protein kinase A catalytic subunit as a cause of adrenal Cushing's syndrome: mechanisms and functional consequences T1 - Mutationen in der katalytischen Untereinheit von Proteinkinase A als Ursache des adrenalen Cushing Syndroms: Mechanismen und funktionelle Konsequenzen N2 - Protein kinase A (PKA) is the main effector of cyclic-adenosine monophosphate (cAMP) and plays an important role in steroidogenesis and proliferation of adrenal cells. In a previous study we found two mutations (L206R, 199_200insW) in the main catalytic subunit of protein kinase A (PKA C) to be responsible for cortisol-producing adrenocortical adenomas (CPAs). These mutations interfere with the formation of a stable holoenzyme, thus causing constitutive PKA activation. More recently, we identified additional mutations affecting PKA C in CPAs associated with overt Cushing syndrome: S213R+insIILR, 200_201insV, W197R, d244 248+E249Q, E32V. This study reports a functional characterization of those PKA Cmutations linked to CPAs of Cushing’s patients. All analyzed mutations except for E32V showed a reduced interaction with at least one tested regulatory (R) subunit. Interestingly the results of the activity differed among the mutants and between the assays employed. For three mutants (L206R, 199_200insW, S213R+insIILR), the results showed enhanced translocation to the nucleus. This was also observed in CRISPR/Cas9 generated PRKACA L206R mutated HEK293T cells. The enhanced nuclear translocation of this mutants could be due to the lack of R subunit binding, but also other mechanisms could be at play. Additionally, I used an algorithm, which predicted an effect of the mutation on substrate specificity for four mutants (L206R, 199_200insW, 200_201insV, d244 248+E249Q). This was proven using phosphoproteomics for three mutants (L206R, 200_201insV, d244 248+E249Q). In PRKACA L206R mutated CPAs this change in substrate specificity also caused hyperphosphorylation of H1.4 on serine 36, which has been reported to be implicated in mitosis. Due to these observations, I hypothesized, that there are several mechanisms of action of PRKACA mutations leading to increased cortisol secretion and cell proliferation in adrenal cells: interference with the formation of a stable holoenzyme, altered subcellular localization and a change in substrate specificity. My data indicate that some PKA C mutants might act via just one, others by a combination of these mechanisms. Altogether, these findings indicate that several mechanisms contribute to the development of CPAs caused by PRKACA mutations. Moreover, these findings provide a highly illustrative example of how alterations in a protein kinase can cause a human disease. N2 - Proteinkinase A (PKA) ist der Haupteffektor von cyclischem Adenosinmonophosphat (cAMP) und spielt eine wichtige Rolle bei der Synthese von Steroiden und der Proliferation von Nebennierenzellen. In einer vorangegangenen Studie fanden wir zwei Mutationen (L206R, 199_200insW) der wichtigsten katalytischen Untereinheit von PKA (PKA C), die für Kortisol sekretierende Nebennierenrindenadenome (CPAs) verantwortlich sind. Diese Mutationen stören die Bildung eines stabilen Holoenzyms und verursachen somit eine dauerhafte PKA Aktivierung. Vor Kurzem fanden wir weitere Mutationen der PKA C in CPAs von Patienten mit Cushing Syndrom: S213R+insIILR, 200_201insV, W197R, d244 248+E249Q, E32V. In dieser Arbeit wurde eine funktionelle Charakterisierung dieser PKA C Mutanten, die im Zusammenhang mit CPAs von Cushing Patienten stehen, durchgeführt. Alle PKA Mutanten, mit Ausnahme von E32V, zeigten eine reduzierte Interaktion mit mindestens einer getesteten regulatorischen (R) Untereinheit. Interessanterweise hatten die Mutanten unterschiedliche Effekte auf die Aktivität der Kinase. Zusätzlich hatte die Analysemethode ebenfalls Einfluss auf die Aktivität der Mutanten. Für drei Mutanten (L206R, 199_200insW, S213R+insIILR) zeigten die Ergebnisse eine verstärkte Translokation der C Untereinheit in den Zellkern. Dies wurde auch in HEK293T Zellen bestätigt, in deren PRKACA Gen mittels CRISPR/Cas9 die L206R Mutation eingeführt wurde. Diese erhöhte Translokation kann durch die fehlende Bindung zur R Untereinheit erklärt werden, aber auch andere Mechanismen könnten eine Rolle spielen. Außerdem zeigten die Ergebnisse eine Veränderung der Substratspezifität, die für vier Mutanten durch einen Algorithmus vorausberechnet wurde (L206R, 199_200insW, 200_201insV, d244-248+E249Q). Für drei dieser Mutanten (L206R, 200_201insV, d244 248+E249Q) wurde dieses Ergebnis mittels Phosphoproteomics nachgewiesen. Diese Änderung der Substratspezifität verursacht in PRKACA L206R mutierten CPAs auch eine Hyperphosphorylierung von H1.4 an Serin 36, welches eine wichtige Rolle in der Zellteilung spielt. Meine Ergebnisse weisen darauf hin, dass es mehrere Wirkungsmechanismen von PRKACA Mutationen gibt, die zu einer erhöhten Sekretion von Kortisol und Zellproliferation in Nebennierenzellen führen: Störung der Bildung eines stabilen Holoenzyms, Änderung der subzellulären Lokalisation und eine Veränderung der Substratspezifität. Meine Ergebnisse weisen darauf hin, dass einige PKA C-Mutanten durch nur einen, andere durch eine Kombination dieser Mechanismen wirken. Insgesamt zeigen diese Ergebnisse, dass PRKACA Mutationen durch mehrere Mechanismen zur Entwicklung von CPAs beitragen. Darüber hinaus liefern diese Ergebnisse ein anschauliches Beispiel dafür, wie Mutationen in einer Proteinkinase eine menschliche Krankheit verursachen können. KW - Proteinkinase A KW - Mutation KW - PRKACA KW - Cushing-Syndrom Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-168937 ER - TY - THES A1 - Jiménez Martín, Ovidio Manuel T1 - Analysis of MYCN and MAX alterations in Wilms Tumor T1 - Analyse von MYCN- und MAX-Verändungen im Wilms Tumor N2 - Wilms tumor (WT) is the most common renal tumor in childhood. Among others, MYCN copy number gain and MYCN P44L and MAX R60Q mutations have been identified in WT. The proto-oncogene MYCN encodes a transcription factor that requires dimerization with MAX to activate transcription of numerous target genes. MYCN gain has been associated with adverse prognosis. The MYCN P44L and MAX R60Q mutations, located in either the transactivating or basic helix-loop-helix domain, respectively, are predicted to be damaging by different pathogenicity prediction tools. These mutations have been reported in several other cancers and remain to be functionally characterized. In order to further describe these events in WT, we screened both mutations in a large cohort of unselected WT patients, to check for an association of the mutation status with certain histological or clinical features. MYCN P44L and MAX R60Q revealed frequencies of 3 % and 0.9 % and also were significantly associated to higher risk of relapse and metastasis, respectively. Furthermore, to get a better understanding of the MAX mutational landscape in WT, over 100 WT cases were analyzed by Sanger sequencing to identify other eventual MAX alterations in its coding sequence. R60Q remained the only MAX CDS alteration described in WT to date. To analyze the potential functional consequences of these mutations, we used a doxycycline-inducible system to overexpress each mutant in HEK293 cells. This biochemical characterization identified a reduced transcriptional activation potential for MAX R60Q, while the MYCN P44L mutation did not change activation potential or protein stability. The protein interactome of N-MYC-P44L was likewise not altered as shown by mass spectrometric analyses of purified N-MYC complexes. However, we could identify a number of novel N-MYC partner proteins, several of these known for their oncogenic potential. Their correlated expression in WT samples suggested a role in WT oncogenesis and they expand the range of potential biomarkers for WT stratification and targeting, especially for high-risk WT. N2 - Der Wilms Tumor (WT) ist der im Kindesalter am häufigsten auftretende Nierentumor. Neben anderen genetischen Veränderungen, wurden MYCN-Kopienzahlgewinn und der MYCN P44L- und MAX R60Q-Mutationen in WT identifiziert. Das Proto-Onkogen MYCN kodiert einen Transkriptionsfaktor, der eine Dimerisierung mit MAX erfordert, um die Transkription zahlreicher Zielgene zu aktivieren. Der MYCN-Gewinn wurde mit einer negativen Prognose assoziiert. Die MYCN P44L- und MAX R60Q-Mutationen, die sich entweder in der transaktivierenden oder in der basischen Helix-Loop-Helix-Domäne befinden, wurden durch verschiedene pathogene Vorhersage-Werkzeuge als schädigend prognostiziert. Über diese Mutationen wird bei mehreren anderen Krebsformen berichtet, doch sie wurden noch nicht umfassend biochemisch charakterisiert. Um diese Vorgänge in WT weitergehend zu charakterisieren, untersuchten wir beide Mutationen in einer großen Gruppe zufällig ausgewählter WT-Patienten mit dem Ziel, einen Zusammenhang zwischen dem Mutationsstatus und gewissen histologischen und klinischen Eigenschaften zu überprüfen. MYCN P44L und MAX R60Q ergaben eine Frequenz von 3 % bzw. 0,9 % in WT und wurden jeweils mit einem signifikant höheren Rückfall- und Metastasierungsrisiko assoziiert. Um ein besseres Verständnis der MAX-Mutationsszenarien in WT zu erlangen, wurden darüber hinaus mehr als einhundert WT-Fälle durch Sanger-Sequenzierung analysiert, mit dem Ziel, andere mögliche Veränderungen in der MAX-Kodierungssequenz zu identifizieren. R60Q blieb dabei die einzige bis heute beschriebene Veränderung der MAX-Kodierungssequenz in WT. Um die potentiellen funktionalen Folgen dieser Mutationen zu untersuchen, nutzten wir ein Doxycyclin-induziertes System, um eine Überexprimierung jedes Mutanten in HEK293-Zellen zu erzielen. Diese biochemische Charakterisierung identifizierte ein reduziertes Transkriptionsaktivierungspotential für MAX R60Q, während die MYCN P44L-Mutation das Aktivierungspotential oder die Proteinstabilität nicht veränderte. Das N-MYC Interaktom wurde während der Massenspektrometrie-Analyse von gereinigten N-MYC-Komplexen ebenfalls nicht verändert. Jedoch konnten wir eine Anzahl von neuartigen N-MYC Partnerproteinen bestimmen, von denen einige für ihr onkogenes Potenzial bekannt sind. Deren korrelierte Expression in WT-Proben deuteten auf eine Rolle bei der WT Onkogenese hin und erweitern die Auswahl potentieller Biomarker für die Stratifizierung von WTs und Gentargeting, insbesondere bei Hochrisiko-WTs. KW - Nephroblastom KW - Genmutation KW - Wilms Tumor KW - MYCN KW - MAX KW - Mutation KW - Protein interactor Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-242919 ER -