TY - INPR A1 - Lambert, Christoph A1 - Völker, Sebastian F. A1 - Koch, Federico A1 - Schmiedel, Alexander A1 - Holzapfel, Marco A1 - Humeniuk, Alexander A1 - Röhr, Merle I. S. A1 - Mitric, Roland A1 - Brixner, Tobias T1 - Energy Transfer Between Squaraine Polymer Sections: From helix to zig-zag and All the Way Back T2 - Journal of the American Chemical Society N2 - Joint experimental and theoretical study of the absorption spectra of squaraine polymers in solution provide evidence that two different conformations are present in solution: a helix and a zig-zag structure. This unique situation allows investigating ultrafast energy transfer processes between different structural segments within a single polymer chain in solution. The understanding of the underlying dynamics is of fundamental importance for the development of novel materials for light-harvesting and optoelectronic applications. We combine here femtosecond transient absorption spectroscopy with time-resolved 2D electronic spectroscopy showing that ultrafast energy transfer within the squaraine polymer chains proceeds from initially excited helix segments to zig-zag segments or vice versa, depending on the solvent as well as on the excitation wavenumber. These observations contrast other conjugated polymers such as MEH-PPV where much slower intrachain energy transfer was reported. The reason for the very fast energy transfer in squaraine polymers is most likely a close matching of the density of states between donor and acceptor polymer segments because of very small reorganization energy in these cyanine-like chromophores. KW - energy transfer dynamics KW - squaraine polymer Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-159607 UR - http://dx.doi.org/10.1021/jacs.5b03644 N1 - This document is the unedited Author's version of a Submitted Work that war subsequently accepted for publication in Journal of the American Chemical Society, copyright American Chemical Society after peer review. To access the final edited and published work see doi:10.1021/jacs.5b03644. ER - TY - INPR A1 - Hoche, Joscha A1 - Schmitt, Hans-Christian A1 - Humeniuk, Alexander A1 - Fischer, Ingo A1 - Mitrić, Roland A1 - Röhr, Merle I. S. T1 - The mechanism of excimer formation: an experimental and theoretical study on the pyrene dimer T2 - Physical Chemistry Chemical Physics N2 - The understanding of excimer formation in organic materials is of fundamental importance, since excimers profoundly influence their functional performance in applications such as light-harvesting, photovoltaics or organic electronics. We present a joint experimental and theoretical study of the ultrafast dynamics of excimer formation in the pyrene dimer in a supersonic jet, which is the archetype of an excimer forming system. We perform simulations of the nonadiabatic photodynamics in the frame of TDDFT that reveal two distinct excimer formation pathways in the gas-phase dimer. The first pathway involves local excited state relaxation close to the initial Franck–Condon geometry that is characterized by a strong excitation of the stacking coordinate exhibiting damped oscillations with a period of 350 fs that persist for several picoseconds. The second excimer forming pathway involves large amplitude oscillations along the parallel shift coordinate with a period of ≈900 fs that after intramolecular vibrational energy redistribution leads to the formation of a perfectly stacked dimer. The electronic relaxation within the excitonic manifold is mediated by the presence of intermolecular conical intersections formed between fully delocalized excitonic states. Such conical intersections may generally arise in stacked π-conjugated aggregates due to the interplay between the long-range and short-range electronic coupling. The simulations are supported by picosecond photoionization experiments in a supersonic jet that provide a time-constant for the excimer formation of around 6–7 ps, in good agreement with theory. Finally, in order to explore how the crystal environment influences the excimer formation dynamics we perform large scale QM/MM nonadiabatic dynamics simulations on a pyrene crystal in the framework of the long-range corrected tight-binding TDDFT. In contrast to the isolated dimer, the excimer formation in the crystal follows a single reaction pathway in which the initially excited parallel slip motion is strongly damped by the interaction with the surrounding molecules leading to the slow excimer stabilization on a picosecond time scale. KW - exciton dynamics KW - pyrene dimer Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-159656 UR - http://dx.doi.org/10.1039/C7CP03990E N1 - Submitted version ER - TY - INPR A1 - Röder, Anja A1 - Humeniuk, Alexander A1 - Giegerich, Jens A1 - Fischer, Ingo A1 - Poisson, Lionel A1 - Mitric, Roland T1 - Femtosecond Time-Resolved Photoelectron Spectroscopy of the Benzyl Radical T2 - Physical Chemistry Chemical Physics N2 - We present a joint experimental and computational study of the nonradiative deactivation of the benzyl radical, C\(_7\)H\(_7\) after UV excitation. Femtosecond time-resolved photoelectron imaging was applied to investigate the photodynamics of the radical. The experiments were accompanied by excited state dynamics simulations using surface hopping. Benzyl has been excited at 265 nm into the D-band (\(\pi\pi^*\)) and the dynamics was probed using probe wavelengths of 398 nm or 798 nm. With 398 nm probe a single time constant of around 70-80 fs was observed. When the dynamics was probed at 798 nm, a second time constant \(\tau_2\)=1.5 ps was visible. It is assigned to further non-radiative deactivation to the lower-lying D\(_1\)/D\(_2\) states. KW - Nonadiabatic dynamics KW - time-resolved photoelectron spectroscopy KW - benzyl radical Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-159474 UR - http://dx.doi.org/10.1039/C7CP01437F N1 - Submitted version ER - TY - INPR A1 - Titov, Evgenii A1 - Humeniuk, Alexander A1 - Mitric, Roland T1 - Exciton localization in excited-state dynamics of a tetracene trimer: A surface hopping LC-TDDFTB study T2 - Physical Chemistry Chemical Physics N2 - Excitons in the molecular aggregates of chromophores are key participants in important processes such as photosynthesis or the functioning of organic photovoltaic devices. Therefore, the exploration of exciton dynamics is crucial. Here we report on exciton localization during excited-state dynamics of the recently synthesized tetracene trimer [Liu et al., Org. Lett., 2017, 19, 580]. We employ the surface hopping approach to nonadiabatic molecular dynamics in conjunction with the long-range corrected time-dependent density functional tight binding (LC-TDDFTB) method [Humeniuk and Mitrić, Comput. Phys. Commun., 2017, 221, 174]. Utilizing a set of descriptors based on the transition density matrix, we perform comprehensive analysis of exciton dynamics. The obtained results reveal an ultrafast exciton localization to a single tetracene unit of the trimer during excited-state dynamics, along with exciton transfer between units. KW - Exciton dynamics Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-198680 UR - https://doi.org/10.1039/C8CP05240A N1 - Accepted Manuscript ER - TY - INPR A1 - Böhnke, Julian A1 - Dellermann, Theresa A1 - Celik, Mehmet Ali A1 - Krummenacher, Ivo A1 - Dewhurst, Rian D. A1 - Demeshko, Serhiy A1 - Ewing, William C. A1 - Hammond, Kai A1 - Heß, Merlin A1 - Bill, Eckhard A1 - Welz, Eileen A1 - Röhr, Merle I. S. A1 - Mitric, Roland A1 - Engels, Bernd A1 - Meyer, Franc A1 - Braunschweig, Holger T1 - Isolation of diradical products of twisted double bonds T2 - Nature Communications N2 - Molecules containing multiple bonds between atoms—most often in the form of olefins—are ubiquitous in nature, commerce, and science, and as such have a huge impact on everyday life. Given their prominence, over the last few decades, frequent attempts have been made to perturb the structure and reactivity of multiply-bound species through bending and twisting. However, only modest success has been achieved in the quest to completely twist double bonds in order to homolytically cleave the associated π bond. Here, we present the isolation of double-bond-containing species based on boron, as well as their fully twisted diradical congeners, by the incorporation of attached groups with different electronic properties. The compounds comprise a structurally authenticated set of diamagnetic multiply-bound and diradical singly-bound congeners of the same class of compound. KW - diradicals KW - diborenes KW - carbenes KW - boron Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-160248 N1 - Submitted version of Julian Böhnke, Theresa Dellermann, Mehmet Ali Celik, Ivo Krummenacher, Rian D. Dewhurst, Serhiy Demeshko, William C. Ewing, Kai Hammond, Merlin Heß, Eckhard Bill, Eileen Welz, Merle I. S. Röhr, Roland Mitrić, Bernd Engels, Franc Meyer & Holger Braunschweig: Isolation of diborenes and their 90°-twisted diradical congeners. Nature Communications. Volume 9, Article number: 1197 (2018) doi:10.1038/s41467-018-02998-3 ER - TY - INPR A1 - Petersen, Jens A1 - Lindner, Joachim O. A1 - Mitric, Roland T1 - Ultrafast Photodynamics of Glucose T2 - Journal of Physical Chemistry B N2 - We have investigated the photodynamics of \(\beta\)-D-glucose employing our field-induced surface hopping method (FISH), which allows us to simulate the coupled electron-nuclear dynamics, including explicitly nonadiabatic effects and light-induced excitation. Our results reveal that from the initially populated S\(_{1}\) and S\(_{2}\) states, glucose returns nonradiatively to the ground state within about 200 fs. This takes place mainly via conical intersections (CIs) whose geometries in most cases involve the elongation of a single O-H bond, while in some instances ring-opening due to dissociation of a C-O bond is observed. Experimentally, excitation to a distinct excited electronic state is improbable due to the presence of a dense manifold of states bearing similar oscillator strengths. Our FISH simulations explicitly including a UV laser pulse of 6.43 eV photon energy reveals that after initial excitation the population is almost equally spread over several close-lying electronic states. This is followed by a fast nonradiative decay on the time scale of 100-200 fs, with the final return to the ground state proceeding via the S\(_{1}\) state through the same types of CIs as observed in the field-free simulations. KW - photodynamics KW - nonadiabatic dynamics KW - conical intersections KW - carbohydrates Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-159155 N1 - This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in Journal of Physical Chemistry, copyright © American Chemical Society after peer review. To access the final edited and published work see doi:10.1021/acs.jpcb.7b08602 ER - TY - INPR A1 - Müller, Stefan A1 - Draeger, Simon A1 - Ma, Kiaonan A1 - Hensen, Matthias A1 - Kenneweg, Tristan A1 - Pfeiffer, Walter A1 - Brixner, Tobias T1 - Fluorescence-Detected Two-Quantum and One-Quantum-Two-Quantum 2D Electronic Spectroscopy T2 - Journal of Physical Chemistry Letters N2 - We demonstrate two-quantum (2Q) coherent two-dimensional (2D)electronic spectroscopy using a shot-to-shot-modulated pulse shaper and fluorescence detection. Broadband collinear excitation is realized with the supercontinuum output of an argon-filled hollow-core fiber, enabling us to excite multiple transitions simultaneously in the visible range. The 2Q contribution is extracted via a three-pulse sequence with 16-fold phase cycling and simulated employing cresyl violet as a model system. Furthermore, we report the first experimental realization of one-quantum−two-quantum (1Q-2Q) 2D spectroscopy, offering less congested spectra as compared with the 2Q implementation. We avoid scattering artifacts and nonresonant solvent contributions by using fluorescence as the observable. This allows us to extract quantitative information about doubly excited states that agree with literature expectations. The high sensitivity and background-free nature of fluorescence detection allow for a general applicability of this method to many other systems. KW - Zweidimensionale Spektroskopie KW - elektronisch angeregte Zustände KW - Doppelquantenkohärenz KW - Fluoreszenz KW - Optische Spektroskopie KW - Molekülzustand Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-173468 UR - https://pubs.acs.org/doi/10.1021/acs.jpclett.8b00541 ER - TY - INPR A1 - Lindner, Joachim O. A1 - Sultangaleeva, Karina A1 - Röhr, Merle I. S. A1 - Mitric, Roland T1 - metaFALCON: A program package for automatic sampling of conical intersection seams using multistate metadynamics T2 - Journal of Chemical Theory and Computation N2 - The multistate metadynamics for automatic exploration of conical intersection seams and systematic location of minimum energy crossing points in molecular systems and its implementation into the software package metaFALCON is presented. Based on a locally modified energy gap between two Born–Oppenheimer electronic states as a collective variable, multistate metadynamics trajectories are driven toward an intersection point starting from an arbitrary ground state geometry and are subsequently forced to explore the conical intersection seam landscape. For this purpose, an additional collective variable capable of distinguishing structures within the seam needs to be defined and an additional bias is introduced into the off-diagonal elements of an extended (multistate) electronic Hamiltonian. We demonstrate the performance of the algorithm on the examples of the 1,3-butadiene, benzene, and 9H-adenine molecules, where multiple minimum energy crossing points could be systematically located using the Wiener number or Cremer–Pople parameters as collective variables. Finally, with the example of 9H-adenine, we show that the multistate metadynamics potential can be used to obtain a global picture of a conical intersection seam. Our method can be straightforwardly connected with any ab initio or semiempirical electronic structure theory that provides energies and gradients of the respective electronic states and can serve for systematic elucidation of the role of conical intersections in the photophysics and photochemistry of complex molecular systems, thus complementing nonadiabatic dynamics simulations. KW - Computational Chemistry KW - Metadynamics KW - Hydrogen KW - Hydrocarbons KW - Chemical Structure Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-199258 UR - https://doi.org/10.1021/acs.jctc.9b00029 N1 - This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Chemical Theory and Computation, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see Journal of Chemical Theory and Computation 2019, 15, 6, 3450-3460. https://doi.org/10.1021/acs.jctc.9b00029. ER - TY - INPR A1 - Lisinetskaya, Polina G. A1 - Mitric, Roland T1 - Collective Response in DNA-Stabilized Silver Cluster Assemblies from First-Principles Simulations T2 - The Journal of Physical Chemistry Letters N2 - We investigate fluorescence resonant energy transfer and concurrent electron dynamics in a pair of DNA-stabilized silver clusters. For this purpose we introduce a methodology for the simulation of collective optoelectronic properties of coupled molecular aggregates starting from first-principles quantum chemistry, which can be further applied to a broad range of coupled molecular systems to study their electro-optical response. Our simulations reveal the existence of low-energy coupled excitonic states, which enable ultrafast energy transport between subunits, and give insight into the origin of the fluorescence signal in coupled DNA-stabilized silver clusters, which have been recently experimentally detected. Hence, we demonstrate the possibility of constructing ultrasmall energy transmission lines and optical converters based on these hybrid molecular systems. KW - Metal clusters Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-198729 UR - https://doi.org/10.1021/acs.jpclett.9b03136 N1 - This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in Journal of Physical Chemistry A, copyright © American Chemical Society after peer review. To access the final edited and published work see The Journal of Physical Chemistry Letters 2019, 10, 24, 7884-7889. https://doi.org/10.1021/acs.jpclett.9b03136. ER - TY - INPR A1 - Röder, Anja A1 - Petersen, Jens A1 - Issler, Kevin A1 - Fischer, Ingo A1 - Mitric, Roland A1 - Poisson, Lionel T1 - Exploring the Excited-State Dynamics of Hydrocarbon Radicals, Biradicals and Carbenes using Time-Resolved Photoelectron Spectroscopy and Field-Induced Surface Hopping Simulations T2 - The Journal of Physical Chemistry A N2 - Reactive hydrocarbon molecules like radicals, biradicals and carbenes are not only key players in combustion processes and interstellar and atmospheric chemistry, but some of them are also important intermediates in organic synthesis. These systems typically possess many low-lying, strongly coupled electronic states. After light absorption, this leads to rich photodynamics characterized by a complex interplay of nuclear and electronic motion, which is still not comprehensively understood and not easy to investigate both experimentally and theoretically. In order to elucidate trends and contribute to a more general understanding, we here review our recent work on excited-state dynamics of open-shell hydrocarbon species using time-resolved photoelectron spectroscopy and field-induced surface hopping simulations, and report new results on the excited-state dynamics of the tropyl and the 1-methylallyl radical. The different dynamics are compared, and the difficulties and future directions of time-resolved photoelectron spectroscopy and excited state dynamics simulations of open-shell hydrocarbon molecules are discussed. KW - Excited state dynamics KW - Hydrocarbon radicals KW - time-resolved photoelectron spectroscopy KW - field-induced surface hopping Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-198734 UR - https://doi.org/10.1021/acs.jpca.9b06346 N1 - This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in Journal of Physical Chemistry A, copyright © American Chemical Society after peer review. To access the final edited and published work see Journal of Physical Chemistry A 2019, 123, 50, 10643-10662. https://doi.org/10.1021/acs.jpca.9b06346. ER - TY - INPR A1 - Auerhammer, Nina A1 - Schulz, Alexander A1 - Schmiedel, Alexander A1 - Holzapfel, Marco A1 - Hoche, Joscha A1 - Röhr, Merle I. S. A1 - Mitric, Roland A1 - Lambert, Christoph T1 - Dynamic exciton localisation in a pyrene-BODIPY-pyrene dye conjugate T2 - Physical Chemistry Chemical Physics N2 - The photophysics of a molecular triad consisting of a BODIPY dye and two pyrene chromophores attached in 2-position are investigated by steady state and fs-time resolved transient absorption spectroscopy as well as by field induced surface hopping (FISH) simulations. While the steady state measurements indicate moderate chromophore interactions within the triad, the time resolved measurements show upon pyrene excitation a delocalised excited state which localises onto the BODIPY chromophore with a time constant of 0.12 ps. This could either be interpreted as an internal conversion process within the excitonically coupled chromophores or as an energy transfer from the pyrenes to the BODIPY dye. The analysis of FISH-trajectories reveals an oscillatory behaviour where the excitation hops between the pyrene units and the BODIPY dye several times until finally they become localised on the BODIPY chromophore within 100 fs. This is accompanied by an ultrafast nonradiative relaxation within the excitonic manifold mediated by the nonadiabatic coupling. Averaging over an ensemble of trajectories allowed us to simulate the electronic state population dynamics and determine the time constants for the nonradiative transitions that mediate the ultrafast energy transfer and exciton localisation on BODIPY. KW - Exciton localization dynamics Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-198718 UR - https://doi.org/10.1039/C9CP00908F N1 - Accepted manuscript ER - TY - INPR A1 - Huber, Bernhard A1 - Pres, Sebastian A1 - Wittmann, Emanuel A1 - Dietrich, Lysanne A1 - Lüttig, Julian A1 - Fersch, Daniel A1 - Krauss, Enno A1 - Friedrich, Daniel A1 - Kern, Johannes A1 - Lisinetskii, Victor A1 - Hensen, Matthias A1 - Hecht, Bert A1 - Bratschitsch, Rudolf A1 - Riedle, Eberhard A1 - Brixner, Tobias T1 - Space- and time-resolved UV-to-NIR surface spectroscopy and 2D nanoscopy at 1 MHz repetition rate N2 - We describe a setup for time-resolved photoemission electron microscopy (TRPEEM) with aberration correction enabling 3 nm spatial resolution and sub-20 fs temporal resolution. The latter is realized by our development of a widely tunable (215–970 nm) noncollinear optical parametric amplifier (NOPA) at 1 MHz repetition rate. We discuss several exemplary applications. Efficient photoemission from plasmonic Au nanoresonators is investigated with phase-coherent pulse pairs from an actively stabilized interferometer. More complex excitation fields are created with a liquid-crystal-based pulse shaper enabling amplitude and phase shaping of NOPA pulses with spectral components from 600 to 800 nm. With this system we demonstrate spectroscopy within a single plasmonic nanoslit resonator by spectral amplitude shaping and investigate the local field dynamics with coherent two-dimensional (2D) spectroscopy at the nanometer length scale (“2D nanoscopy”). We show that the local response varies across a distance as small as 33 nm in our sample. Further, we report two-color pump–probe experiments using two independent NOPA beamlines. We extract local variations of the excited-state dynamics of a monolayered 2D material (WSe2) that we correlate with low-energy electron microscopy (LEEM) and reflectivity (LEER) measurements. Finally, we demonstrate the in-situ sample preparation capabilities for organic thin films and their characterization via spatially resolved electron diffraction and dark-field LEEM. KW - Photoemission electron microscopy PEEM KW - Low energy electron microscopy LEEM KW - Spatially resolved 2D spectroscopy KW - Two-color pump-probe spectroscopy KW - Time-resolved photoemission electron microscopy Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-191906 SN - 0034-6748 N1 - This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Review of Scientific Instruments 90, 113103 (2019); https://doi.org/10.1063/1.5115322 and may be found at https://doi.org/10.1063/1.5115322. ER - TY - INPR A1 - Süß, Jasmin A1 - Wehner, Johannes G. A1 - Dostál, Jakub A1 - Engel, Volker A1 - Brixner, Tobias T1 - Mapping of exciton-exciton annihilation in a molecular dimer via fifth-order femtosecond two-dimensional spectroscopy T2 - Journal of Physical Chemistry Letters N2 - We present a theoretical study on exciton–exciton annihilation (EEA) in a molecular dimer. This process is monitored using a fifth-order coherent two-dimensional (2D) spectroscopy as was recently proposed by Dostál et al. [Nat. Commun. 9, 2466 (2018)]. Using an electronic three-level system for each monomer, we analyze the different paths which contribute to the 2D spectrum. The spectrum is determined by two entangled relaxation processes, namely, the EEA and the direct relaxation of higher lying excited states. It is shown that the change of the spectrum as a function of a pulse delay can be linked directly to the presence of the EEA process. KW - Exziton KW - Spektroskopie KW - Exciton KW - 2Dimensionale Spektroskopie KW - EEA KW - exciton-exciton Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-178482 UR - https://aip.scitation.org/doi/full/10.1063/1.5086151 N1 - This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in J. Süß et al.,J. Chem. Phys. 150, 104304 (2019); https://doi.org/10.1063/1.5086151 and may be found at https://doi.org/10.1063/1.5086151 ER - TY - INPR A1 - Wohlgemuth, Matthias A1 - Mitric, Roland T1 - Excitation energy transport in DNA modelled by multi-chromophoric field-induced surface hopping T2 - Physical Chemistry Chemical Physics N2 - Absorption of ultraviolet light is known as a major source of carcinogenic mutations of DNA. The underlying processes of excitation energy dissipation are yet not fully understood. In this work we provide a new and generally applicable route for studying the excitation energy transport in multi-chromophoric complexes at an atomistic level. The surface-hopping approach in the frame of the extended Frenkel exciton model combined with QM/MM techniques allowed us to simulate the photodynamics of the alternating (dAdT)10 : (dAdT)10 double-stranded DNA. In accordance with recent experiments, we find that the excited state decay is multiexponential, involving a long and a short component which are due to two distinct mechanisms: formation of long-lived delocalized excitonic and charge transfer states vs. ultrafast decaying localized states resembling those of the bare nucleobases. Our simulations explain all stages of the ultrafast photodynamics including initial photoexcitation, dynamical evolution out of the Franck-Condon region, excimer formation and nonradiative relaxation to the ground state. KW - Photodynamics KW - DNA Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-209467 ET - submitted version ER - TY - INPR A1 - Humeniuk, Alexander A1 - Bužančić, Margarita A1 - Hoche, Joscha A1 - Cerezo, Javier A1 - Mitric, Roland A1 - Santoro, Fabrizio A1 - Bonačić-Koutecky, Vlasta T1 - Predicting fluorescence quantum yields for molecules in solution: A critical assessment of the harmonic approximation and the choice of the lineshape function T2 - The Journal of Chemical Physics N2 - For the rational design of new fluorophores, reliable predictions of fluorescence quantum yields from first principles would be of great help. However, efficient computational approaches for predicting transition rates usually assume that the vibrational structure is harmonic. While the harmonic approximation has been used successfully to predict vibrationally resolved spectra and radiative rates, its reliability for non-radiative rates is much more questionable. Since non-adiabatic transitions convert large amounts of electronic energy into vibrational energy, the highly excited final vibrational states deviate greatly from harmonic oscillator eigenfunctions. We employ a time-dependent formalism to compute radiative and non-radiative rates for transitions and study the dependence on model parameters. For several coumarin dyes we compare different adiabatic and vertical harmonic models (AS, ASF, AH, VG, VGF, VH), in order to dissect the importance of displacements, frequency changes and Duschinsky rotations. In addition we analyze the effect of different broadening functions (Gaussian, Lorentzian or Voigt). Moreover, to assess the qualitative influence of anharmonicity on the internal conversion rate, we develop a simplified anharmonic model. We adress the reliability of these models considering the potential errors introduced by the harmonic approximation and the phenomenological width of the broadening function. KW - fluorescence quantum yield Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-199305 UR - https://doi.org/10.1063/1.5143212 N1 - Accepted Manuscript. N1 - This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in A. Humeniuk et al. J. Chem. Phys. 152, 054107 (2020); https://doi.org/10.1063/1.5143212 and may be found at https://doi.org/10.1063/1.5143212. ER - TY - INPR A1 - Titov, Evgenii A1 - Humeniuk, Alexander A1 - Mitric, Roland T1 - Comparison of moving and fixed basis sets for nonadiabatic quantum dynamics at conical intersections T2 - Chemical Physics N2 - We assess the performance of two different types of basis sets for nonadiabatic quantum dynamics at conical intersections. The basis sets of both types are generated using Ehrenfest trajectories of nuclear coherent states. These trajectories can either serve as a moving (time-dependent) basis or be employed to sample a fixed (time-independent) basis. We demonstrate on the example of two-state two-dimensional and three-state five-dimensional models that both basis set types can yield highly accurate results for population transfer at intersections, as compared with reference quantum dynamics. The details of wave packet evolutions are discussed for the case of the two-dimensional model. The fixed basis is found to be superior to the moving one in reproducing nonlocal spreading and maintaining correct shape of the wave packet upon time evolution. Moreover, for the models considered, the fixed basis set outperforms the moving one in terms of computational efficiency. KW - Nonadiabatic quantum dynamics Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-199225 UR - https://doi.org/10.1016/j.chemphys.2019.110526 N1 - Submitted version ER - TY - INPR A1 - Titov, Evgenii A1 - Humeniuk, Alexander A1 - Mitric, Roland T1 - Comparison of moving and fixed basis sets for nonadiabatic quantum dynamics at conical intersections T2 - Chemical Physics N2 - We assess the performance of two different types of basis sets for nonadiabatic quantum dynamics at conical intersections. The basis sets of both types are generated using Ehrenfest trajectories of nuclear coherent states. These trajectories can either serve as a moving (time-dependent) basis or be employed to sample a fixed (time-independent) basis. We demonstrate on the example of two-state two-dimensional and three-state five-dimensional models that both basis set types can yield highly accurate results for population transfer at intersections, as compared with reference quantum dynamics. The details of wave packet evolutions are discussed for the case of the two-dimensional model. The fixed basis is found to be superior to the moving one in reproducing true nonlocal spreading and maintaining correct shape of the wave packet upon time evolution. Moreover, for the models considered, the fixed basis set outperforms the moving one in terms of computational efficiency. KW - Nonadiabatic quantum dynamics Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-198699 UR - https://doi.org/10.1016/j.chemphys.2019.110526 N1 - Accepted manuscript ER - TY - INPR A1 - Fersch, Daniel A1 - Malý, Pavel A1 - Rühe, Jessica A1 - Lisinetskii, Victor A1 - Hensen, Matthias A1 - Würthner, Frank A1 - Brixner, Tobias T1 - Single-Molecule Ultrafast Fluorescence-Detected Pump–Probe Microscopy N2 - We introduce fluorescence-detected pump–probe microscopy by combining a wavelength-tunable ultrafast laser with a confocal scanning fluorescence microscope, enabling access to the femtosecond time scale on the micrometer spatial scale. In addition, we obtain spectral information from Fourier transformation over excitation pulse-pair time delays. We demonstrate this new approach on a model system of a terrylene bisimide (TBI) dye embedded in a PMMA matrix and acquire the linear excitation spectrum as well as time-dependent pump–probe spectra simultaneously. We then push the technique towards single TBI molecules and analyze the statistical distribution of their excitation spectra. Furthermore, we demonstrate the ultrafast transient evolution of several individual molecules, highlighting their different behavior in contrast to the ensemble due to their individual local environment. By correlating the linear and nonlinear spectra, we assess the effect of the molecular environment on the excited-state energy. KW - Fluoreszenz KW - Ultrafast spectroscopy KW - Single-molecule microscopy Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-313485 ER - TY - INPR A1 - Dietzsch, Julia A1 - Jayachandran, Ajay A1 - Mueller, Stefan A1 - Höbartner, Claudia A1 - Brixner, Tobias T1 - Excitonic coupling of RNA-templated merocyanine dimer studied by higher-order transient absorption spectroscopy T2 - Chemical Communications N2 - We report the synthesis and spectroscopic analysis of RNA containing the barbituric acid merocyanine rBAM2 as a nucleobase surrogate. Incorporation into RNA strands by solid-phase synthesis leads to fluorescence enhancement compared to the free chromophore. In addition, linear absorption studies show the formation of an excitonically coupled H-type dimer in the hybridized duplex. Ultrafast third- and fifth-order transient absorption spectroscopy of this non-fluorescent dimer suggests immediate (sub-200 fs) exciton transfer and annihilation due to the proximity of the rBAM2 units. KW - Barbituric Acid Merocyanines KW - Nucleobase Surrogate Incorporation KW - Higher-order Transient Absorption Spectroscopy KW - rBAM2-labeled RNA strands Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-327772 ET - submitted version ER -