TY - JOUR A1 - Dietz, Andreas J. A1 - Conrad, Christopher A1 - Kuenzer, Claudia A1 - Gesell, Gerhard A1 - Dech, Stefan T1 - Identifying Changing Snow Cover Characteristics in Central Asia between 1986 and 2014 from Remote Sensing Data JF - Remote Sensing N2 - Central Asia consists of the five former Soviet States Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, and Uzbekistan, therefore comprising an area of similar to 4 Mio km(2). The continental climate is characterized by hot and dry summer months and cold winter seasons with most precipitation occurring as snowfall. Accordingly, freshwater supply is strongly depending on the amount of accumulated snow as well as the moment of its release after snowmelt. The aim of the presented study is to identify possible changes in snow cover characteristics, consisting of snow cover duration, onset and offset of snow cover season within the last 28 years. Relying on remotely sensed data originating from medium resolution imagers, these snow cover characteristics are extracted on a daily basis. The resolution of 500-1000 m allows for a subsequent analysis of changes on the scale of hydrological sub-catchments. Long-term changes are identified from this unique dataset, revealing an ongoing shift towards earlier snowmelt within the Central Asian Mountains. This shift can be observed in most upstream hydro catchments within Pamir and Tian Shan Mountains and it leads to a potential change of freshwater availability in the downstream regions, exerting additional pressure on the already tensed situation. KW - AVHRR data KW - satellite KW - Northern Xinjiang KW - cloud KW - products KW - Central Asia KW - climate change KW - Amu Darya KW - Syr Darya KW - Tian Shan KW - snow KW - snow cover KW - snow cover duration KW - Pamir KW - AVHRR KW - MODIS KW - algorithm KW - validation Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-114470 SN - 2072-4292 VL - 6 IS - 12 ER - TY - JOUR A1 - Forkuor, Gerald A1 - Conrad, Christopher A1 - Thiel, Michael A1 - Ullmann, Tobias A1 - Zoungrana, Evence T1 - Integration of Optical and Synthetic Aperture Radar Imagery for Improving Crop Mapping in Northwestern Benin, West Africa N2 - Crop mapping in West Africa is challenging, due to the unavailability of adequate satellite images (as a result of excessive cloud cover), small agricultural fields and a heterogeneous landscape. To address this challenge, we integrated high spatial resolution multi-temporal optical (RapidEye) and dual polarized (VV/VH) SAR (TerraSAR-X) data to map crops and crop groups in northwestern Benin using the random forest classification algorithm. The overall goal was to ascertain the contribution of the SAR data to crop mapping in the region. A per-pixel classification result was overlaid with vector field boundaries derived from image segmentation, and a crop type was determined for each field based on the modal class within the field. A per-field accuracy assessment was conducted by comparing the final classification result with reference data derived from a field campaign. Results indicate that the integration of RapidEye and TerraSAR-X data improved classification accuracy by 10%–15% over the use of RapidEye only. The VV polarization was found to better discriminate crop types than the VH polarization. The research has shown that if optical and SAR data are available for the whole cropping season, classification accuracies of up to 75% are achievable. KW - random forest KW - crop mapping KW - agriculture KW - West Africa KW - RapidEye KW - TerraSAR-X Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-113070 ER -