TY - JOUR A1 - Maiellaro, Isabella A1 - Lohse, Martin J. A1 - Kitte, Robert J. A1 - Calebiro, Davide T1 - cAMP Signals in Drosophila Motor Neurons Are Confined to Single Synaptic Boutons JF - Cell Reports N2 - The second messenger cyclic AMP (cAMP) plays an important role in synaptic plasticity. Although there is evidence for local control of synaptic transmission and plasticity, it is less clear whether a similar spatial confinement of cAMP signaling exists. Here, we suggest a possible biophysical basis for the site-specific regulation of synaptic plasticity by cAMP, a highly diffusible small molecule that transforms the physiology of synapses in a local and specific manner. By exploiting the octopaminergic system of Drosophila, which mediates structural synaptic plasticity via a cAMP-dependent pathway, we demonstrate the existence of local cAMP signaling compartments of micrometer dimensions within single motor neurons. In addition, we provide evidence that heterogeneous octopamine receptor localization, coupled with local differences in phosphodiesterase activity, underlies the observed differences in cAMP signaling in the axon, cell body, and boutons. KW - cAMP KW - synaptic plasticity KW - PDE KW - octopamine KW - FRET KW - active zone KW - dunce KW - GPCR Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-162324 VL - 17 IS - 5 ER - TY - THES A1 - Lyga, Sandra T1 - Glycoprotein hormone receptor signaling in the endosomal compartment T1 - Glykoproteinhormon-Rezeptor Signaltransduktion im endosomalen Kompartiment N2 - G protein-coupled receptors (GPCRs) are the major group of cell-surface receptors that transmit extracellular signals via classical, G protein-dependent pathways into the cell. Although GPCRs were long assumed to signal exclusively from the cell-surface, recent investigations have demonstrated a possibly completely new paradigm. In this new view, GPCR continues signaling via 3´,5´-cyclic adenosine monophosphate (cAMP) after their agonist-induced internalization of ligand/receptor complexes into an intracellular compartment, causing persistent cAMP elevation and apparently specific signaling outcomes. The thyroid stimulating hormone (TSH) receptor is one of the first GPCRs, which has been reported to show persistent signaling after ligand removal (Calebiro et al., 2009). In the meantime, signaling by internalized GPCR become a highly investigated topic and has been shown for several GPCRs, including the parathyroid hormone receptor (Ferrandon et al., 2009), D1 dopamine receptor (Kotowski et al., 2011) and beta2-adrenergic receptor (Irannejad et al., 2013). A recent study on the beta2-adrenergic receptor revealed that internalized receptor not only participates in cAMP signaling, but is also involved in gene transcription (Tsvetanova and von Zastrow, 2014). However, a biological effect of GPCR signaling at intracellular sites, which would demonstrate its physiological relevance, still remained to be shown. To investigate GPCR signaling from intracellular compartment under physiological condition, two different cellular models were utilized in the present study: intact ovarian follicles expressing luteinizing hormone (LH) receptors and primary thyroid cells expressing TSH receptors. Intact ovarian follicles were obtained from a transgenic mouse expressing, a Förster/Fluorescence Resonance Energy Transfer (FRET) sensor for cAMP to monitor cAMP/LH receptor signaling. This study provides the first accurate spatiotemporal characterization of cAMP signaling, which is derived from different cell layers of an intact ovarian follicle. Additionally, it could be shown that cAMP diffusion via gap junctions is implicated in spreading the LH-induced cAMP signals from one the outermost (mural granulosa) to the innermost (cumulus oophorus) cell layer of an ovarian follicle. Interestingly, LH receptor stimulation was associated with persistent cAMP signaling after LH removal and negligible desensitization of the cAMP signal. Interfering with receptor internalization with a dynamin inhibitor dynasore did not only prevent persistent LH-induced cAMP signaling, but also impaired the resumption of meiosis in follicle-enclosed oocytes, a key biological effect of LH. In order to investigate the downstream activation of protein kinase A (PKA) in primary thyroid cells, FRET sensors with different subcellular localization (plasma membrane, cytosol and nucleus) were transiently transfected into primary thyroid cells of wild-type mice via electroporation. Interestingly, TSH stimulation causes at least two distinct phases of PKA activation in the global primary thyroid cell, which are temporally separated by approximately 2 min. In addition, PKA activation in different subcellular compartments are characterized by dissimilar kinetics and amplitudes. Pharmacological inhibition of TSH receptor internalization largely prevented the second (i.e. late) phase of PKA activation as well as the subsequent TSH-dependent phosphorylation of CREB and TSH-dependent induction of early genes. These results suggest that PKA activation and nuclear signaling require internalization of the TSH receptor. Taken together, the data of the present study provide strong evidence that GPCR signaling at intracellular sites is distinct from the one occurring at the cell-surface and is highly physiologically relevant. N2 - G-Protein-gekoppelte Rezeptoren (GPCR) umfassen die größte Gruppe von Rezeptoren in der Zellmembran und übermitteln extrazelluläre Signale via G-Protein-abhängige Signalwege in das Zellinnere. Obwohl lange Zeit die Wissenschaft davon ausging, das GPCR ausschließlich an der Zelloberfläche Signale weiterleiten, zeigen Studien der letzten Jahre eine vollkommen neuartige Signalweiterleitung aus dem Zellinneren. In dieser neuen Sichtweise, vermitteln GPCR nach Agonist-induzierter Internalisierung des Liganden/Rezeptor-Komplexes in das Zellinnere weiterhin zyklische Adenosin-3´,5´-monophosphat (cAMP)-Signale, was zu einer dauerhaften cAMP-Erhöhung und einem spezifischen Ergebnis der Signaltransduktion führt. Einer der ersten GPCR, für den gezeigt wurde, dass Signale aus dem Zelleninneren übertragen werden können, war der Thyreoidea-stimulierendes Hormon (TSH) Rezeptor. In der Zwischenzeit wurde die Signalübertagung von bereits internalisierten Rezeptoren für weitere GPCR gezeigt, inklusive des beta2-adrenergen Rezeptors. Vor kurzem demonstrierte eine Studie des beta2-adrenerge Rezeptors, dass die intrazellulare GPCR-Signalübertragung nicht nur an der cAMP-Weiterleitung sondern auch an der Gentranskription beteiligt ist. Bis jetzt konnte jedoch noch kein Zusammenhang zwischen der GPCR-Signaltransduktion aus dem Zellinneren und einem biologischen Effekt mit physiologischer Relevanz hergestellt werden. Um GPCR-Signaltransduktion im Zellinneren unter physiologischen Bedingungen zu untersuchen, wurden in der aktuellen Arbeit zwei unterschiedliche zelluläre Modelle verwendet: Intakte Follikel eines Ovars, welche luteinisierende Hormon (LH) Rezeptoren exprimieren und TSH-Rezeptoren-exprimierende primäre Schilddrüsenzellen. Die Follikel wurden aus einer transgenen Maus, die einen Förster/Fluoreszenz Resonanz Energie Transfer (FRET) Sensor für cAMP exprimiert, gewonnen, um cAMP/LH-Signaltransduktion zu messen. Diese Arbeit zeigt die erste exakte, zeitliche und räumliche Charakterisierung der LH- induzierten cAMP-Signaltransduktion in intakten Follikeln des Ovars. Des Weiteren konnte gezeigt werden, dass die Diffusion von cAMP via Gap Junctions ein wichtiger Bestandteil bei der Übermittlung des LH-induzierten cAMP-Signals von der äußeren (Mural granulosa) zur inneren (Cumulus oophorus) Zellebene eines Follikels darstellt. Interessanterweise ergab die LH- Rezeptor Stimulation nach Entfernung des Liganden LH ein anhaltendes cAMP-Signal sowie eine unwesentliche Desensitization des cAMP-Signals. Die Inhibition der Rezeptorendozytose mit Dynasore verhinderte nicht nur das LH-induzierte anhaltende cAMP-Signal sondern beeinflusste auch die Wiederaufnahme der Meiose durch die Follikel-eingeschlossene Oozyte, einer der wichtigsten biologischen Aufgaben von LH. Um den Einfluss der TSH-Rezeptorinternalisierung auf die PKA-Aktivität zu untersuchen, wurden primäre Schilddrüsenzellen von FVB-Mäusen, mit FRET-basierenden Protein Kinase A (PKA) Sensor exprimiert werden, via Elektroporation transfiziert. Die Ergebnisse zeigen, dass eine TSH- vermittelte Stimulation des Rezeptors mindestens zwei kinetisch und räumlich unterschiedliche PKA-Signale in Schilddrüsenzellen auslöst, die zeitlich voneinander getrennt sind. Durch die Inhibierung des TSH-Rezeptorinternalisierung konnte gezeigt werden, dass das zweite PKA-Signal sowie die darauffolgende TSH-abhängige Phosphorylierung des Trankriptionsfaktors CREB und die TSH-abhängige Regulierung von Gen Expression vermindert ist. Diese Befunde geben Aufschluss über die Notwendigkeit der Internalisierung des Rezeptors in das Zellinnere für eine effektive PKA- und Zellkern-Signaltransduktion. Zusammenfassend lässt sich sagen, dass die Ergebnisse dieser Arbeit neue, und wichtige Erkenntnisse über den Mechanismus der GPCR-Signalweiterleitung im Zellinneren und erstmals einen Einblick über die biologische Relevanz der Rezeptorinternalisierung liefern. KW - GPCR KW - Receptor signaling KW - Glycoprotein hormone KW - Receptor internalization KW - cAMP signaling KW - PKA signaling Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-139994 ER - TY - THES A1 - Balakrishnan, Ashwin T1 - Fast molecular mobility of β\(_2\)-adrenergic receptor revealed by time-resolved fluorescence spectroscopy T1 - Schnelle molekulare Beweglichkeit des β\(_2\)-adrenergen Rezeptors durch zeitaufgelöste Fluoreszenzspektroskopie N2 - G-protein- coupled receptors (GPCRs) are the largest family of membrane confined receptors and they transduce ligand binding to downstream effects. Almost 40% of the drugs in the world target GPCRs due to their function, albeit knowing less about their activation. Understanding their dynamic behaviour in basal and activated state could prove key to drug development in the future. GPCRs are known to exhibit complex molecular mobility patterns. A plethora of studies have been and are being conducted to understand the mobility of GPCRs. Due to limitations of imaging and spectroscopic techniques commonly used, the relevant timescales are hard to access. The most commonly used techniques are electron paramagnetic resonance or double electronelectron resonance, nuclear magnetic resonance, time-resolved fluorescence, single particle tracking and fluorescence recovery after photobleaching. Among these techniques only fluorescence has the potential to probe live cells. In this thesis, I use different time-resolved fluorescence spectroscopic techniques to quantify diffusion dynamics / molecular mobility of β2-adrenergic receptor (β2-AR) in live cells. The thesis shows that β2-AR exhibits mobility over an exceptionally broad temporal range (nanosecond to second) that can be linked to its respective physiological scenario. I explain how β2-AR possesses surprisingly fast lateral mobility (~10 μm²/s) associated with vesicular transport in contrast to the prior reports of it originating from fluorophore photophysics and free fluorophores in the cytosol. In addition, β2-AR has rotational mobility (~100 μs) that makes it conform to the Saffman-Delbrück model of membrane diffusion unlike earlier studies. These contrasts are due to the limitations of the methodologies used. The limitations are overcome in this thesis by using different time-resolved fluorescence techniques of fluorescence correlation spectroscopy (FCS), time-resolved anisotropy (TRA) and polarisation resolved fullFCS (fullFCS). FCS is limited to microsecond to the second range and TRA is limited to the nanosecond range. fullFCS complements the two techniques by covering the blind spot of FCS and TRA in the microsecond range. Finally, I show how ligand stimulation causes a decrease in lateral mobility which could be a hint at cluster formation due to internalisation and how β2-AR possesses a basal oligomerisation that does not change on activation. Thus, through this thesis, I show how different complementary fluorescence techniques are necessary to overcome limitations of each technique and to thereby elucidate functional dynamics of GPCR activation and how it orchestrates downstream signalling. N2 - G¬Protein¬gekoppelte Rezeptoren (GPCRs) sind die größte Familie der Membran¬Rezeptoren und durch Bindung von Liganden leiten sie extrazlluläre Signal in das Innere der Zelle weiter. Fast 40% der Medikamente auf der Welt zielen aufgrund ihrer Funktion auf GPCRs ab, obwohl man relative wenig über ihre Aktivierung weiß. Das Verständnis ihres dynamischen Verhaltens im basalen und aktivierten Zustand könnte sich in Zukunft als Schlüssel zur Medikamentenentwicklung erweisen. GPCRs sind dafür bekannt, dass sie komplexe molekulare Bewegungsmuster aufweisen. Eine Fülle von Studien wurden und werden durchgeführt, um die Beweglichkeit von GPCRs zu verstehen. Aufgrund der Einschränkungen der gängigen bildgebenden und spektroskopischen Techniken sind die relevanten Zeitskalen nur schwer messbar. Die am häufigsten verwendeten Techniken sind die paramagnetische Elektronenresonanz oder die Doppel¬Elektron¬Elektron¬Resonanz, die magnetische Kernresonanz, die zeitaufgelöste Fluoreszenz, die Einzelpartikelverfolgung und die Fluoreszenzwiederherstellung nach Photobleichung. Unter diesen Techniken haben nur die Fluoreszenz¬basierten Techniken das Potential, lebende Zellen zu untersuchen. In dieser Arbeit werden verschiedene zeitaufgelöste fluoreszenzspektroskopische Techniken zur Quantifizierung der Diffusionsdynamik oder molekularen Mobilität des β2¬adrenergen Rezeptors (β2¬AR) in lebenden Zellen verwendet. Diese Arbeit zeigt, dass β2-AR eine Beweglichkeit über einen außergewöhnlich breiten, zeitlichen Bereich (Nanosekunde bis Sekunde) aufweist, der mit dem jeweiligen physiologischen Szenario verknüpft werden kann. Es wird gezeigt, wie β2¬AR eine überraschend schnelle, laterale Bewegung (~10 μm²/s) besitzt, welche mit vesikulärem Transport in Verbindung gebracht werden kann. Im Gegensatz zu früheren Berichten, wonach die beobachtete Komponente von der Photophysik der Fluorophore und freien Fluorophoren im Zytosol abstammt. Zusätzlich weist β2¬AR eine Rotationsbeweglichkeit (~100 μs) auf, welche es ¬ im Gegensatz zu früheren Studien ¬ dem Saffman¬Delbrück¬Modell der Membrandiffusion zuordnen lässt. Dieser Unterschied ist auf die Beschränkungen der verwendeten Techniken zurückzuführen. Die Einschränkungen werden in dieser Arbeit durch die Verwendung verschiedener zeitaufgelöster Fluoreszenztechniken überwunden, z. B. der Fluoreszenzkorrelationsspektroskopie (FCS) im Bereich von mehreren hundert Nanosekunden bis Sekunden, der zeitaufgelösten Anisotropie (TRA) im Nanosekundenbereich und der polarisationsaufgelösten FullFCS (FullFCS), die die zeitlich Lücke zwischen FCS und TRA schließt. Zuletzt wird eine Abnahme der lateralen Beweglichkeit durch Ligandenstimulation gezeigt, was ein Hinweis auf Clusterbildung aufgrund von Internalisierung sein könnte, und dass β2¬AR eine basale Oligomerisierung aufweist, die sich bei Aktivierung nicht ändert. Zusammenfassend kann man sagen, dass verschiedene komplementäre Fluoreszenztechniken notwendig sind, um die Einschränkungen der einzelnen Techniken zu überwinden und dadurch die funktionelle Dynamik der GPCR¬Aktivierung und deren Bedeutung für die nachgeschaltete Signalübertragung aufzuklären. KW - Fluorescence correlation spectroscopy KW - GPCR KW - time-resolved anisotropy KW - adrenergic receptor KW - homoFRET Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-250856 ER -