TY - JOUR A1 - Nukarinen, Ella A1 - Nägele, Thomas A1 - Pedrotti, Lorenzo A1 - Wurzinger, Bernhard A1 - Mair, Andrea A1 - Landgraf, Ramona A1 - Börnke, Frederik A1 - Hanson, Johannes A1 - Teige, Markus A1 - Baena-Gonzalez, Elena A1 - Dröge-Laser, Wolfgang A1 - Weckwerth, Wolfram T1 - Quantitative phosphoproteomics reveals the role of the AMPK plant ortholog SnRK1 as a metabolic master regulator under energy deprivation JF - Scientific Reports N2 - Since years, research on SnRK1, the major cellular energy sensor in plants, has tried to define its role in energy signalling. However, these attempts were notoriously hampered by the lethality of a complete knockout of SnRK1. Therefore, we generated an inducible amiRNA::SnRK1α2 in a snrk1α1 knock out background (snrk1α1/α2) to abolish SnRK1 activity to understand major systemic functions of SnRK1 signalling under energy deprivation triggered by extended night treatment. We analysed the in vivo phosphoproteome, proteome and metabolome and found that activation of SnRK1 is essential for repression of high energy demanding cell processes such as protein synthesis. The most abundant effect was the constitutively high phosphorylation of ribosomal protein S6 (RPS6) in the snrk1α1/α2 mutant. RPS6 is a major target of TOR signalling and its phosphorylation correlates with translation. Further evidence for an antagonistic SnRK1 and TOR crosstalk comparable to the animal system was demonstrated by the in vivo interaction of SnRK1α1 and RAPTOR1B in the cytosol and by phosphorylation of RAPTOR1B by SnRK1α1 in kinase assays. Moreover, changed levels of phosphorylation states of several chloroplastic proteins in the snrk1α1/α2 mutant indicated an unexpected link to regulation of photosynthesis, the main energy source in plants. KW - phosphoproteomics KW - SnRK1 KW - energy deprivation KW - plants Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-167638 VL - 6 IS - 31697 ER - TY - JOUR A1 - Tome, Filipa A1 - Nägele, Thomas A1 - Adamo, Mattia A1 - Garg, Abhroop A1 - Marco-Ilorca, Carles A1 - Nukarinen, Ella A1 - Pedrotti, Lorenzo A1 - Peviani, Alessia A1 - Simeunovic, Andrea A1 - Tatkiewicz, Anna A1 - Tomar, Monika A1 - Gamm, Magdalena T1 - The low energy signaling network JF - Frontiers in Plant Science N2 - Stress impacts negatively on plant growth and crop productivity, causing extensive losses to agricultural production worldwide. Throughout their life, plants are often confronted with multiple types of stress that affect overall cellular energy status and activate energy-saving responses. The resulting low energy syndrome (LES) includes transcriptional, translational, and metabolic reprogramming and is essential for stress adaptation. The conserved kinases sucrose-non-fermenting-1-related protein kinase-1 (SnRK1) and target of rapamycin (TOR) play central roles in the regulation of LES in response to stress conditions, affecting cellular processes and leading to growth arrest and metabolic reprogramming. We review the current understanding of how TOR and SnRK1 are involved in regulating the response of plants to low energy conditions. The central role in the regulation of cellular processes, the reprogramming of metabolism, and the phenotypic consequences of these two kinases will be discussed in light of current knowledge and potential future developments. KW - stress KW - metabolism KW - T6P KW - energy signaling KW - TOR KW - bZIP KW - SnRK1 KW - messenger-RNA translation KW - bZIP transcription fators KW - amino-acid-metabolism Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-115813 SN - 1664-462X VL - 5 IS - 353 ER -