TY - JOUR A1 - Wohlfarth, Carolin A1 - Schmitteckert, Stefanie A1 - Härtle, Janina D. A1 - Houghton, Lesley A. A1 - Dweep, Harsh A1 - Fortea, Marina A1 - Assadi, Ghazaleh A1 - Braun, Alexander A1 - Mederer, Tanja A1 - Pöhner, Sarina A1 - Becker, Philip P. A1 - Fischer, Christine A1 - Granzow, Martin A1 - Mönnikes, Hubert A1 - Mayer, Emeran A. A1 - Sayuk, Gregory A1 - Boeckxstaens, Guy A1 - Wouters, Mira M. A1 - Simrén, Magnus A1 - Lindberg, Greger A1 - Ohlsson, Bodil A1 - Schmidt, Peter Thelin A1 - Dlugosz, Aldona A1 - Agreus, Lars A1 - Andreasson, Anna A1 - D'Amato, Mauro A1 - Burwinkel, Barbara A1 - Bermejo, Justo Lorenzo A1 - Röth, Ralph A1 - Lasitschka, Felix A1 - Vicario, Maria A1 - Metzger, Marco A1 - Santos, Javier A1 - Rappold, Gudrun A. A1 - Martinez, Cristina A1 - Niesler, Beate T1 - miR-16 and miR-103 impact 5-HT4 receptor signalling and correlate with symptom profile in irritable bowel syndrome JF - Scientific Reports N2 - Irritable bowel syndrome (IBS) is a gut-brain disorder involving alterations in intestinal sensitivity and motility. Serotonin 5-HT4 receptors are promising candidates in IBS pathophysiology since they regulate gut motor function and stool consistency, and targeted 5-HT4R selective drug intervention has been proven beneficial in subgroups of patients. We identified a single nucleotide polymorphism (SNP) (rs201253747) c.*61 T > C within the 5-HT4 receptor gene \(HTR4\) to be predominantly present in diarrhoea-IBS patients (IBS-D). It affects a binding site for the miR-16 family and miR-103/miR-107 within the isoforms \({HTR4b/i}\) and putatively impairs \(HTR4\) expression. Subsequent miRNA profiling revealed downregulation of miR-16 and miR-103 in the jejunum of IBS-D patients correlating with symptoms. \(In\) \(vitro\) assays confirmed expression regulation via three 3′UTR binding sites. The novel isoform \(HTR4b\_2\) lacking two of the three miRNA binding sites escapes miR-16/103/107 regulationin SNP carriers. We provide the first evidence that \(HTR4\) expression is fine-tuned by miRNAs, and that this regulation is impaired either by the SNP c.*61 T > C or bydiminished levels of miR-16 and miR-103 suggesting that \(HTR4\) might be involved in the development of IBS-D. KW - Medicine KW - Gene regulation KW - Irritable bowel syndrome Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-173478 VL - 7 ER - TY - JOUR A1 - Becker, Philip P. A1 - Rau, Monika A1 - Schmitt, Johannes A1 - Malsch, Carolin A1 - Hammer, Christian A1 - Bantel, Heike A1 - Müllhaupt, Beat A1 - Geier, Andreas T1 - Performance of serum microRNAs -122, -192 and -21 as biomarkers in patients with non-alcoholic steatohepatitis JF - PLoS ONE N2 - Objectives Liver biopsies are the current gold standard in non-alcoholic steatohepatitis (NASH) diagnosis. Their invasive nature, however, still carries an increased risk for patients' health. The development of non-invasive diagnostic tools to differentiate between bland steatosis (NAFL) and NASH remains crucial. The aim of this study is the evaluation of investigated circulating microRNAs in combination with new targets in order to optimize the discrimination of NASH patients by non-invasive serum biomarkers. Methods Serum profiles of four microRNAs were evaluated in two cohorts consisting of 137 NAFLD patients and 61 healthy controls. In a binary logistic regression model microRNAs of relevance were detected. Correlation of microRNA appearance with known biomarkers like ALT and CK18-Asp396 was evaluated. A simplified scoring model was developed, combining the levels of microRNA in circulation and CK18-Asp396 fragments. Receiver operating characteristics were used to evaluate the potential of discriminating NASH. Results The new finding of our study is the different profile of circulating miR-21 in NASH patients (p<0.0001). Also, it validates recently published results of miR-122 and miR-192 to be differentially regulated in NAFL and NASH. Combined microRNA expression profiles with CK18-Asp396 fragment level scoring model had a higher potential of NASH prediction compared to other risk biomarkers (AUROC = 0.83, 95% CI = 0.754-0.908; p<0.001). Evaluation of score model for NAFL (Score = 0) and NASH (Score = 4) had shown high rates of sensitivity (91%) and specificity (83%). Conclusions Our study defines candidates for a combined model of miRNAs and CK18-Asp396 levels relevant as a promising expansion for diagnosis and in turn treatment of NASH. KW - fatty liver disease KW - independent marker KW - expression KW - injury KW - NAFLD KW - circulating micrornas KW - caspase activation KW - fibrosis KW - miR-122 KW - apoptosis Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-145147 VL - 10 IS - 11 ER -