TY - JOUR A1 - Fernàndez-Castillo, Noèlia A1 - Cabana-Domínguez, Judit A1 - Kappel, Djenifer B. A1 - Torrico, Bàrbara A1 - Weber, Heike A1 - Lesch, Klaus-Peter A1 - Lao, Oscar A1 - Reif, Andreas A1 - Cormand, Bru T1 - Exploring the contribution to ADHD of genes involved in Mendelian disorders presenting with hyperactivity and/or inattention JF - Genes N2 - Attention-deficit hyperactivity disorder (ADHD) is a complex neurodevelopmental disorder characterized by hyperactivity, impulsivity, and/or inattention, which are symptoms also observed in many rare genetic disorders. We searched for genes involved in Mendelian disorders presenting with ADHD symptoms in the Online Mendelian Inheritance in Man (OMIM) database, to curate a list of new candidate risk genes for ADHD. We explored the enrichment of functions and pathways in this gene list, and tested whether rare or common variants in these genes are associated with ADHD or with its comorbidities. We identified 139 genes, causal for 137 rare disorders, mainly related to neurodevelopmental and brain function. Most of these Mendelian disorders also present with other psychiatric traits that are often comorbid with ADHD. Using whole exome sequencing (WES) data from 668 ADHD cases, we found rare variants associated with the dimension of the severity of inattention symptoms in three genes: KIF11, WAC, and CRBN. Then, we focused on common variants and identified six genes associated with ADHD (in 19,099 cases and 34,194 controls): MANBA, UQCC2, HIVEP2, FOPX1, KANSL1, and AUH. Furthermore, HIVEP2, FOXP1, and KANSL1 were nominally associated with autism spectrum disorder (ASD) (18,382 cases and 27,969 controls), as well as HIVEP2 with anxiety (7016 cases and 14,475 controls), and FOXP1 with aggression (18,988 individuals), which is in line with the symptomatology of the rare disorders they are responsible for. In conclusion, inspecting Mendelian disorders and the genes responsible for them constitutes a valuable approach for identifying new risk genes and the mechanisms of complex disorders. KW - ADHD KW - rare mendelian disorders KW - genetic variants Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-252346 SN - 2073-4425 VL - 13 IS - 1 ER - TY - JOUR A1 - Brevik, Erlend J A1 - van Donkelaar, Marjolein M. J. A1 - Weber, Heike A1 - Sánchez-Mora, Cristina A1 - Jacob, Christian A1 - Rivero, Olga A1 - Kittel-Schneider, Sarah A1 - Garcia-martinez, Iris A1 - Aebi, Marcel A1 - van Hulzen, Kimm A1 - Cormand, Bru A1 - Ramos-Quiroga, Josep A A1 - Lesch, Klaus-Peter A1 - Reif, Andreas A1 - Ribases, Marta A1 - Franke, Barbara A1 - Posserud, Maj-Britt A1 - Johansson, Stefan A1 - Lundervold, Astri J. A1 - Haavik, Jan A1 - Zayats, Tetyana T1 - Genome-wide analyses of aggressiveness in attention-deficit hyperactivity disorder JF - American Journal of Medical Genetics Part B-Neuropsychiatric Genetics N2 - Aggressiveness is a behavioral trait that has the potential to be harmful to individuals and society. With an estimated heritability of about 40%, genetics is important in its development. We performed an exploratory genome-wide association (GWA) analysis of childhood aggressiveness in attention deficit hyperactivity disorder (ADHD) to gain insight into the underlying biological processes associated with this trait. Our primary sample consisted of 1,060 adult ADHD patients (aADHD). To further explore the genetic architecture of childhood aggressiveness, we performed enrichment analyses of suggestive genome-wide associations observed in aADHD among GWA signals of dimensions of oppositionality (defiant/vindictive and irritable dimensions) in childhood ADHD (cADHD). No single polymorphism reached genome-wide significance (P<5.00E-08). The strongest signal in aADHD was observed at rs10826548, within a long noncoding RNA gene (beta = -1.66, standard error (SE) = 0.34, P = 1.07E-06), closely followed by rs35974940 in the neurotrimin gene (beta = 3.23, SE = 0.67, P = 1.26E-06). The top GWA SNPs observed in aADHD showed significant enrichment of signals from both the defiant/vindictive dimension (Fisher's P-value = 2.28E-06) and the irritable dimension in cADHD (Fisher's P-value = 0.0061). In sum, our results identify a number of biologically interesting markers possibly underlying childhood aggressiveness and provide targets for further genetic exploration of aggressiveness across psychiatric disorders. KW - Large multicenter ADHD KW - Antisocial behavior KW - Diagnostic approach KW - Rating scale KW - Gene KW - Deficit/hyperactivity disorder KW - Susceptibility loci KW - Conduct disorder KW - Association KW - Adult KW - ADHD KW - Aggression KW - GWAS Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-188116 VL - 171B IS - 5 ER -