TY - JOUR A1 - Patzer, Theresa Sophie A1 - Kunz, Andreas Steven A1 - Huflage, Henner A1 - Conrads, Nora A1 - Luetkens, Karsten Sebastian A1 - Pannenbecker, Pauline A1 - Paul, Mila Marie A1 - Ergün, Süleyman A1 - Bley, Thorsten Alexander A1 - Grunz, Jan-Peter T1 - Ultrahigh-resolution photon-counting CT in cadaveric fracture models: spatial frequency is not everything JF - Diagnostics N2 - In this study, the impact of reconstruction sharpness on the visualization of the appendicular skeleton in ultrahigh-resolution (UHR) photon-counting detector (PCD) CT was investigated. Sixteen cadaveric extremities (eight fractured) were examined with a standardized 120 kVp scan protocol (CTDI\(_{vol}\) 10 mGy). Images were reconstructed with the sharpest non-UHR kernel (Br76) and all available UHR kernels (Br80 to Br96). Seven radiologists evaluated image quality and fracture assessability. Interrater agreement was assessed with the intraclass correlation coefficient. For quantitative comparisons, signal-to-noise-ratios (SNRs) were calculated. Subjective image quality was best for Br84 (median 1, interquartile range 1–3; p ≤ 0.003). Regarding fracture assessability, no significant difference was ascertained between Br76, Br80 and Br84 (p > 0.999), with inferior ratings for all sharper kernels (p < 0.001). Interrater agreement for image quality (0.795, 0.732–0.848; p < 0.001) and fracture assessability (0.880; 0.842–0.911; p < 0.001) was good. SNR was highest for Br76 (3.4, 3.0–3.9) with no significant difference to Br80 and Br84 (p > 0.999). Br76 and Br80 produced higher SNRs than all kernels sharper than Br84 (p ≤ 0.026). In conclusion, PCD-CT reconstructions with a moderate UHR kernel offer superior image quality for visualizing the appendicular skeleton. Fracture assessability benefits from sharp non-UHR and moderate UHR kernels, while ultra-sharp reconstructions incur augmented image noise. KW - photon-counting KW - tomography KW - X-ray computed KW - fracture KW - cancellous bone KW - convolution kernel Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-319281 SN - 2075-4418 VL - 13 IS - 10 ER - TY - JOUR A1 - Huflage, Henner A1 - Fieber, Tabea A1 - Färber, Christian A1 - Knarr, Jonas A1 - Veldhoen, Simon A1 - Jordan, Martin C. A1 - Gilbert, Fabian A1 - Bley, Thorsten Alexander A1 - Meffert, Rainer H. A1 - Grunz, Jan-Peter A1 - Schmalzl, Jonas T1 - Interobserver reliability of scapula fracture classifications in intra- and extra-articular injury patterns JF - BMC Musculoskeletal Disorders N2 - Background Morphology and glenoid involvement determine the necessity of surgical management in scapula fractures. While being present in only a small share of patients with shoulder trauma, numerous classification systems have been in use over the years for categorization of scapula fractures. The purpose of this study was to evaluate the established AO/OTA classification in comparison to the classification system of Euler and Rüedi (ER) with regard to interobserver reliability and confidence in clinical practice. Methods Based on CT imaging, 149 patients with scapula fractures were retrospectively categorized by two trauma surgeons and two radiologists using the classification systems of ER and AO/OTA. To measure the interrater reliability, Fleiss kappa (κ) was calculated independently for both fracture classifications. Rater confidence was stated subjectively on a five-point scale and compared with Wilcoxon signed rank tests. Additionally, we computed the intraclass correlation coefficient (ICC) based on absolute agreement in a two-way random effects model to assess the diagnostic confidence agreement between observers. Results In scapula fractures involving the glenoid fossa, interrater reliability was substantial (κ = 0.722; 95% confidence interval [CI] 0.676–0.769) for the AO/OTA classification in contrast to moderate agreement (κ = 0.579; 95% CI 0.525–0.634) for the ER classification system. Diagnostic confidence for intra-articular fracture patterns was superior using the AO/OTA classification compared to ER (p < 0.001) with higher confidence agreement (ICC: 0.882 versus 0.831). For extra-articular fractures, ER (κ = 0.817; 95% CI 0.771–0.863) provided better interrater reliability compared to AO/OTA (κ = 0.734; 95% CI 0.692–0.776) with higher diagnostic confidence (p < 0.001) and superior agreement between confidence ratings (ICC: 0.881 versus 0.912). Conclusions The AO/OTA classification is most suitable to categorize intra-articular scapula fractures with glenoid involvement, whereas the classification system of Euler and Rüedi appears to be superior in extra-articular injury patterns with fractures involving only the scapula body, spine, acromion and coracoid process. KW - confidence KW - scapula KW - glenoid KW - fracture KW - classification KW - reliability Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-299795 VL - 23 IS - 1 ER -