TY - JOUR A1 - Schneider, Leon N. A1 - Tanzer Krauel, Eva-Maria A1 - Deutsch, Carl A1 - Urbahns, Klaus A1 - Bischof, Tobias A1 - Maibom, Kristina A. M. A1 - Landmann, Johannes A1 - Keppner, Fabian A1 - Kerpen, Christoph A1 - Hailmann, Michael A1 - Zapf, Ludwig A1 - Knuplez, Tanja A1 - Bertermann, Rüdiger A1 - Ignat'ev, Nikolai V. A1 - Finze, Maik T1 - Stable and Storable N(CF\(_{3}\))\(_{2}\) Transfer Reagents JF - Chemistry—A European Journal N2 - Fluorinated groups are essential for drug design, agrochemicals, and materials science. The bis(trifluoromethyl)amino group is an example of a stable group that has a high potential. While the number of molecules containing perfluoroalkyl, perfluoroalkoxy, and other fluorinated groups is steadily increasing, examples with the N(CF\(_{3}\))\(_{2}\) group are rare. One reason is that transfer reagents are scarce and metal-based storable reagents are unknown. Herein, a set of Cu\(^{I}\) and Ag\(^{I}\) bis(trifluoromethyl)amido complexes stabilized by N- and P-donor ligands with unprecedented stability are presented. The complexes are stable solids that can even be manipulated in air for a short time. They are bis(trifluoromethyl)amination reagents as shown by nucleophilic substitution and Sandmeyer reactions. In addition to a series of benzylbis(trifluoromethyl)amines, 2-bis(trifluoromethyl)amino acetate was obtained, which, upon hydrolysis, gives the fluorinated amino acid N,N-bis(trifluoromethyl)glycine. KW - silver KW - amination KW - copper KW - fluorinated ligands KW - N ligands Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-256890 VL - 27 IS - 42 ER - TY - JOUR A1 - Drisch, Michael A1 - Bischoff, Lisa A. A1 - Sprenger, Jan A. P. A1 - Hennig, Philipp T. A1 - Wirthensohn, Raphael A1 - Landmann, Johannes A1 - Konieczka, Szymon Z. A1 - Hailmann, Michael A1 - Ignat'ev, Nikolai V. A1 - Finze, Maik T1 - Innovative Syntheses of Cyano(fluoro)borates: Catalytic Cyanation, Electrochemical and Electrophilic Fluorination JF - Chemistry – A European Journal N2 - Different types of high‐yield, easily scalable syntheses for cyano(fluoro)borates Kt[BF\(_{n}\)(CN)\(_{4-n}\)] (n=0–2) (Kt=cation), which are versatile building blocks for materials applications and chemical synthesis, have been developed. Tetrafluoroborates react with trimethylsilyl cyanide in the presence of metal‐free Brønsted or Lewis acid catalysts under unprecedentedly mild conditions to give tricyanofluoroborates or tetracyanoborates. Analogously, pentafluoroethyltrifluoroborates are converted into pentafluoroethyltricyanoborates. Boron trifluoride etherate, alkali metal salts, and trimethylsilyl cyanide selectively yield dicyanodifluoroborates or tricyanofluoroborates. Fluorination of cyanohydridoborates is the third reaction type that includes direct fluorination with, for example, elemental fluorine, stepwise halogenation/fluorination reactions, and electrochemical fluorination (ECF) according to the Simons process. In addition, fluorination of [BH(CN)\(_{2}\){OC(O)Et}]\(^{-}\) to result in [BF(CN)\(_{2}\){OC(O)Et}]\(^{-}\) is described. KW - cyanoborates KW - electrochemical fluorination KW - fluorination KW - fluoroborates KW - ionic liquids Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-216027 VL - 26 IS - 50 SP - 11625 EP - 11633 ER -