TY - JOUR A1 - Herrmann, Johannes A1 - Lotz, Christopher A1 - Karagiannidis, Christian A1 - Weber-Carstens, Steffen A1 - Kluge, Stefan A1 - Putensen, Christian A1 - Wehrfritz, Andreas A1 - Schmidt, Karsten A1 - Ellerkmann, Richard K. A1 - Oswald, Daniel A1 - Lotz, Gösta A1 - Zotzmann, Viviane A1 - Moerer, Onnen A1 - Kühn, Christian A1 - Kochanek, Matthias A1 - Muellenbach, Ralf A1 - Gaertner, Matthias A1 - Fichtner, Falk A1 - Brettner, Florian A1 - Findeisen, Michael A1 - Heim, Markus A1 - Lahmer, Tobias A1 - Rosenow, Felix A1 - Haake, Nils A1 - Lepper, Philipp M. A1 - Rosenberger, Peter A1 - Braune, Stephan A1 - Kohls, Mirjam A1 - Heuschmann, Peter A1 - Meybohm, Patrick T1 - Key characteristics impacting survival of COVID-19 extracorporeal membrane oxygenation JF - Critical Care N2 - Background Severe COVID-19 induced acute respiratory distress syndrome (ARDS) often requires extracorporeal membrane oxygenation (ECMO). Recent German health insurance data revealed low ICU survival rates. Patient characteristics and experience of the ECMO center may determine intensive care unit (ICU) survival. The current study aimed to identify factors affecting ICU survival of COVID-19 ECMO patients. Methods 673 COVID-19 ARDS ECMO patients treated in 26 centers between January 1st 2020 and March 22nd 2021 were included. Data on clinical characteristics, adjunct therapies, complications, and outcome were documented. Block wise logistic regression analysis was applied to identify variables associated with ICU-survival. Results Most patients were between 50 and 70 years of age. PaO\(_{2}\)/FiO\(_{2}\) ratio prior to ECMO was 72 mmHg (IQR: 58–99). ICU survival was 31.4%. Survival was significantly lower during the 2nd wave of the COVID-19 pandemic. A subgroup of 284 (42%) patients fulfilling modified EOLIA criteria had a higher survival (38%) (p = 0.0014, OR 0.64 (CI 0.41–0.99)). Survival differed between low, intermediate, and high-volume centers with 20%, 30%, and 38%, respectively (p = 0.0024). Treatment in high volume centers resulted in an odds ratio of 0.55 (CI 0.28–1.02) compared to low volume centers. Additional factors associated with survival were younger age, shorter time between intubation and ECMO initiation, BMI > 35 (compared to < 25), absence of renal replacement therapy or major bleeding/thromboembolic events. Conclusions Structural and patient-related factors, including age, comorbidities and ECMO case volume, determined the survival of COVID-19 ECMO. These factors combined with a more liberal ECMO indication during the 2nd wave may explain the reasonably overall low survival rate. Careful selection of patients and treatment in high volume ECMO centers was associated with higher odds of ICU survival. KW - Covid-19 KW - extracorporeal membrane oxygenation (ECMO) KW - intensive care unit Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-299686 VL - 26 IS - 1 ER - TY - JOUR A1 - Kredel, Markus A1 - Muellenbach, Ralf A1 - Johannes, Amelie A1 - Brederlau, Joerg A1 - Roewer, Norbert A1 - Wunder, Christian T1 - Hepatic effects of lung protective pressure controlled ventilation and a combination of high frequency oscillatory ventilation and extracorporeal lung assist in experimental lung injury N2 - Background: Ventilation with high positive end-expiratory pressure (PEEP) can lead to hepatic dysfunction. The aim of this study was to investigate the hepatic effects of strategies using high airway pressures either in pressure-controlled ventilation (PCV) or in high-frequency oscillatory ventilation (HFOV) combined with an arteriovenous extracorporeal lung assist (ECLA). Material/Methods: Pietrain pigs underwent induction of lung injury by saline lavage. Ventilation was continued for 24 hours either as PCV with tidal volumes of 6 ml/kg and PEEP 3 cmH2O above the lower inflection point of the pressure-volume curve or as HFOV (≥12 Hz) with a mean tracheal airway pressure 3 cmH2O above the lower inflection point combined with arteriovenous ECLA (HFOV+ECLA). Fluids and norepinephrine stabilized the circulation. The indocyanine green plasma disappearance rate, serum bilirubin, aspartate aminotransferase, alanine aminotransferase, γ-glutamyltransferase, alkaline phosphatase, glutamate dehydrogenase, lactate dehydrogenase and creatine kinase were determined repeatedly. Finally, liver neutrophils were counted and liver cell apoptosis was assessed by terminal deoxynucleotidyl transferase nick end labeling (TUNEL). Results: Aspartate aminotransferase increased in the PCV group about three-fold and in the HFOV+ECLA group five-fold (p<0.001). Correspondingly, creatine kinase increased about two-fold and four-fold, respectively (p<0.001). Lactate dehydrogenase was increased in the HFOV+ECLA group (p<0.028). The number of neutrophils infiltrating the liver tissue and the apoptotic index were low. Conclusions: High airway pressure PCV and HFOV with ECLA in the treatment of lavage-induced lung injury in pigs did not cause liver dysfunction or damage. The detected elevation of enzymes might be of extrahepatic origin. KW - Neutrophils KW - Lung Injury KW - L-Lactate Dehydrogenase KW - Interactive Ventilatory Support KW - In Situ Nick-End Labeling KW - High-Frequency Ventilation KW - Creatine Kinase KW - Aspartate Aminotransferases KW - Apoptosis KW - Positive-Pressure Respiration Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-70833 ER -