TY - JOUR A1 - Götz, Lisa A1 - Rueckschloss, Uwe A1 - Balk, Gözde A1 - Pfeiffer, Verena A1 - Ergün, Süleyman A1 - Kleefeldt, Florian T1 - The role of carcinoembryonic antigen-related cell adhesion molecule 1 in cancer JF - Frontiers in Immunology N2 - The Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), also known as CD66a, is a member of the immunoglobulin superfamily. CEACAM1 was shown to be a prognostic marker in patients suffering from cancer. In this review, we summarize pre-clinical and clinical evidence linking CEACAM1 to tumorigenicity and cancer progression. Furthermore, we discuss potential CEACAM1-based mechanisms that may affect cancer biology. KW - CEACAM1 KW - CEA KW - cancer KW - tumor KW - malignancy KW - metastasis KW - signaling Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-357250 VL - 14 ER - TY - JOUR A1 - Kleefeldt, Florian A1 - Upcin, Berin A1 - Bömmel, Heike A1 - Schulz, Christian A1 - Eckner, Georg A1 - Allmanritter, Jan A1 - Bauer, Jochen A1 - Braunger, Barbara A1 - Rueckschloss, Uwe A1 - Ergün, Süleyman T1 - Bone marrow-independent adventitial macrophage progenitor cells contribute to angiogenesis JF - Cell Death & Disease N2 - Pathological angiogenesis promotes tumor growth, metastasis, and atherosclerotic plaque rupture. Macrophages are key players in these processes. However, whether these macrophages differentiate from bone marrow-derived monocytes or from local vascular wall-resident stem and progenitor cells (VW-SCs) is an unresolved issue of angiogenesis. To answer this question, we analyzed vascular sprouting and alterations in aortic cell populations in mouse aortic ring assays (ARA). ARA culture leads to the generation of large numbers of macrophages, especially within the aortic adventitia. Using immunohistochemical fate-mapping and genetic in vivo-labeling approaches we show that 60% of these macrophages differentiate from bone marrow-independent Ly6c\(^{+}\)/Sca-1\(^{+}\) adventitial progenitor cells. Analysis of the NCX\(^{−/-}\) mouse model that genetically lacks embryonic circulation and yolk sac perfusion indicates that at least some of those progenitor cells arise yolk sac-independent. Macrophages represent the main source of VEGF in ARA that vice versa promotes the generation of additional macrophages thereby creating a pro-angiogenetic feedforward loop. Additionally, macrophage-derived VEGF activates CD34\(^{+}\) progenitor cells within the adventitial vasculogenic zone to differentiate into CD31\(^{+}\) endothelial cells. Consequently, depletion of macrophages and VEGFR2 antagonism drastically reduce vascular sprouting activity in ARA. In summary, we show that angiogenic activation induces differentiation of macrophages from bone marrow-derived as well as from bone marrow-independent VW-SCs. The latter ones are at least partially yolk sac-independent, too. Those VW-SC-derived macrophages critically contribute to angiogenesis, making them an attractive target to interfere with pathological angiogenesis in cancer and atherosclerosis as well as with regenerative angiogenesis in ischemic cardiovascular disorders. KW - macrophages KW - angiogenesis KW - bone marrow-derived monocytes Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-299724 VL - 13 IS - 3 ER - TY - JOUR A1 - Gergs, Ulrich A1 - Jahn, Tina A1 - Schulz, Nico A1 - Großmann, Claudia A1 - Rueckschloss, Uwe A1 - Demus, Uta A1 - Buchwalow, Igor B. A1 - Neumann, Joachim T1 - Protein phosphatase 2A improves cardiac functional response to ischemia and sepsis JF - International Journal of Molecular Sciences N2 - Reversible protein phosphorylation is a posttranslational modification of regulatory proteins involved in cardiac signaling pathways. Here, we focus on the role of protein phosphatase 2A (PP2A) for cardiac gene expression and stress response using a transgenic mouse model with cardiac myocyte-specific overexpression of the catalytic subunit of PP2A (PP2A-TG). Gene and protein expression were assessed under basal conditions by gene chip analysis and Western blotting. Some cardiac genes related to the cell metabolism and to protein phosphorylation such as kinases and phosphatases were altered in PP2A-TG compared to wild type mice (WT). As cardiac stressors, a lipopolysaccharide (LPS)-induced sepsis in vivo and a global cardiac ischemia in vitro (stop-flow isolated perfused heart model) were examined. Whereas the basal cardiac function was reduced in PP2A-TG as studied by echocardiography or as studied in the isolated work-performing heart, the acute LPS- or ischemia-induced cardiac dysfunction deteriorated less in PP2A-TG compared to WT. From the data, we conclude that increased PP2A activity may influence the acute stress tolerance of cardiac myocytes. KW - protein phosphorylation KW - PP2A KW - transgenic mice KW - heart KW - LPS KW - sepsis KW - ischemia Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284035 SN - 1422-0067 VL - 23 IS - 9 ER - TY - JOUR A1 - Kleefeldt, Florian A1 - Bömmel, Heike A1 - Broede, Britta A1 - Thomsen, Michael A1 - Pfeiffer, Verena A1 - Wörsdörfer, Philipp A1 - Karnati, Srikanth A1 - Wagner, Nicole A1 - Rueckschloss, Uwe A1 - Ergün, Süleyman T1 - Aging‐related carcinoembryonic antigen‐related cell adhesion molecule 1 signaling promotes vascular dysfunction JF - Aging Cell N2 - Aging is an independent risk factor for cardiovascular diseases and therefore of particular interest for the prevention of cardiovascular events. However, the mechanisms underlying vascular aging are not well understood. Since carcinoembryonic antigen‐related cell adhesion molecule 1 (CEACAM1) is crucially involved in vascular homeostasis, we sought to identify the role of CEACAM1 in vascular aging. Using human internal thoracic artery and murine aorta, we show that CEACAM1 is upregulated in the course of vascular aging. Further analyses demonstrated that TNF‐α is CEACAM1‐dependently upregulated in the aging vasculature. Vice versa, TNF‐α induces CEACAM1 expression. This results in a feed‐forward loop in the aging vasculature that maintains a chronic pro‐inflammatory milieu. Furthermore, we demonstrate that age‐associated vascular alterations, that is, increased oxidative stress and vascular fibrosis, due to increased medial collagen deposition crucially depend on the presence of CEACAM1. Additionally, age‐dependent upregulation of vascular CEACAM1 expression contributes to endothelial barrier impairment, putatively via increased VEGF/VEGFR‐2 signaling. Consequently, aging‐related upregulation of vascular CEACAM1 expression results in endothelial dysfunction that may promote atherosclerotic plaque formation in the presence of additional risk factors. Our data suggest that CEACAM1 might represent an attractive target in order to delay physiological aging and therefore the transition to vascular disorders such as atherosclerosis. KW - aging KW - anti‐aging KW - cytokines KW - inflammation KW - mouse KW - reactive oxygen species Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201231 VL - 2019 IS - 18 ER -