TY - JOUR A1 - Liu, Siyuan A1 - Légaré, Marc-André A1 - Seufert, Jens A1 - Prieschl, Dominic A1 - Rempel, Anna A1 - Englert, Lukas A1 - Dellermann, Theresa A1 - Paprocki, Valerie A1 - Stoy, Andreas A1 - Braunschweig, Holger T1 - 2,2′-Bipyridyl as a Redox-Active Borylene Abstraction Agent JF - Inorganic Chemistry N2 - 2,2′-Bipyridyl is shown to spontaneously abstract a borylene fragment (R–B:) from various hypovalent boron compounds. This process is a redox reaction in which the bipyridine is reduced and becomes a dianionic substituent bound to boron through its two nitrogen atoms. Various transition metal–borylene complexes and diboranes, as a well as a diborene, take part in this reaction. In the latter case, our results show an intriguing example of the homolytic cleavage of a B═B double bond. KW - Borylene KW - Heterocycles KW - Boron KW - Main-group chemistry Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-215595 N1 - This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in Inorganic Chemistry, copyright © American Chemical Society after peer review. To access the final edited and published work see https://doi.org/10.1021/acs.inorgchem.0c01383. VL - 59 IS - 15 ER - TY - INPR A1 - Muessig, Jonas H. A1 - Thaler, Melanie A1 - Dewhurst, Rian D. A1 - Paprocki, Valerie A1 - Seufert, Jens A1 - Mattock, James D. A1 - Vargas, Alfredo A1 - Braunschweig, Holger T1 - Phosphine-Stabilized Diiododiborenes: Isolable Diborenes with Six Labile Bonds T2 - Angewandte Chemie, International Edition N2 - The lability of B=B, B-P and B-halide bonds is combined in the syntheses of the first diiododiborenes. In a series of reactivity tests, these diiododiborenes demonstrate cleavage of all six of their central bonds in different ways, leading to products of B=B hydrogenation and dihalogenation as well as halide exchange. KW - boron KW - low-valent main-group species KW - iodine KW - multiple bonding KW - 1,2-additions Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-178608 N1 - This is the pre-peer reviewed version of the following article: J. H. Muessig, M. Thaler, R. D. Dewhurst, V. Paprocki, J. Seufert, J. D. Mattock, A. Vargas, H. Braunschweig, Angew. Chem. Int. Ed. 2019, 58, 4405, which has been published in final form at https://doi.org/10.1002/anie.201814230. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. ER - TY - INPR A1 - Englert, Lukas A1 - Stoy, Andreas A1 - Arrowsmith, Merle A1 - Müssig, Jonas H. A1 - Thaler, Melanie A1 - Deißenberger, Andrea A1 - Häfner, Alena A1 - Böhnke, Julian A1 - Hupp, Florian A1 - Seufert, Jens A1 - Mies, Jan A1 - Damme, Alexander A1 - Dellermann, Theresa A1 - Hammond, Kai A1 - Kupfer, Thomas A1 - Radacki, Krzysztof A1 - Thiess, Torsten A1 - Braunschweig, Holger T1 - Stable Lewis Base Adducts of Tetrahalodiboranes: Synthetic Methods and Structural Diversity T2 - Chemistry - A European Journal N2 - A series of 22 new bis(phosphine), bis(carbene) and bis(isonitrile) tetrahalodiborane adducts has been synthesized, either by direct adduct formation with highly sensitive B2X4 precursors (X = Cl, Br, I) or by ligand exchange at stable B2X4(SMe2)2 precursors (X = Cl, Br) with labile dimethylsulfide ligands. The isolated compounds have been fully characterized using NMR spectroscopic, (C,H,N)- elemental and, for 20 of these compounds, X-ray crystallographic analysis, revealing an unexpected variation in the bonding motifs. Besides the classical B2X4L2 diborane(6) adducts, some of the more sterically demanding carbene ligands induce a halide displacement leading to the first halide-bridged monocationic diboron species, [B2X3L2]A (A = BCl4, Br, I). Furthermore, low-temperature 1:1 reactions of B2Cl4 with sterically demanding N-heterocyclic carbenes led to the formation of kinetically unstable mono-adducts, one of which was structurally characterized. A comparison of the NMR and structural data of new and literature-known bis-adducts shows several trends pertaining to the nature of the halides and the stereoelectronic properties of the Lewis bases employed. KW - diborane(6) KW - Lewis-base adducts KW - ligand exchange KW - crystallography KW - NMR spectroscopy Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-184888 N1 - This is the pre-peer reviewed version of the following article: L. Englert, A. Stoy, M. Arrowsmith, J. H. Muessig, M. Thaler, A. Deißenberger, A. Häfner, J. Böhnke, F. Hupp, J. Seufert, J. Mies, A. Damme, T. Dellermann, K. Hammond, T. Kupfer, K. Radacki, T. Thiess, H. Braunschweig, Chem. Eur. J. 2019, 25, 8612. https://doi.org/10.1002/chem.201901437, which has been published in final form at https://doi.org/10.1002/chem.201901437. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. ER -