TY - JOUR A1 - Lindert, J. M. A1 - Pozzorini, S. A1 - Boughezal, R. A1 - Campbell, J. M. A1 - Denner, A. A1 - Dittmaier, S. A1 - Gehrmann-De Ridder, A. A1 - Gehrmann, T. A1 - Glover, N. A1 - Huss, A. A1 - Kallweit, S. A1 - Maierhöfer, P. A1 - Mangano, M. L. A1 - Morgan, T. A. A1 - Mück, A. A1 - Petriello, F. A1 - Salam, G. P. A1 - Schönherr, M. A1 - Williams, C. T1 - Precise predictions for \(V+\)jets dark matter backgrounds JF - European Physical Journal C N2 - High-energy jets recoiling against missing transverse energy (MET) are powerful probes of dark matter at the LHC. Searches based on large MET signatures require a precise control of the \({Z(ν\overline{ν})}+\) jet background in the signal region. This can be achieved by taking accurate data in control regions dominated by \(Z(ℓ^+ℓ^−)+\) jet, \(W(ℓν)+\) jet and \(γ+\) jet production, and extrapolating to the \({Z(ν\overline{ν})}+\) jet background by means of precise theoretical predictions. In this context, recent advances in perturbative calculations open the door to significant sensitivity improvements in dark matter searches. In this spirit, we present a combination of state-of-the-art calculations for all relevant \(V+\) jets processes, including throughout NNLO QCD corrections and NLO electroweak corrections supplemented by Sudakov logarithms at two loops. Predictions at parton level are provided together with detailed recommendations for their usage in experimental analyses based on the reweighting of Monte Carlo samples. Particular attention is devoted to the estimate of theoretical uncertainties in the framework of dark matter searches, where subtle aspects such as correlations across different \(V+\) jet processes play a key role. The anticipated theoretical uncertainty in the \({Z(ν\overline{ν})}+\) jet background is at the few percent level up to the TeV range. KW - Physics KW - High energy physics KW - High-energy jets KW - Dark matter Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-172555 VL - 77 ER - TY - JOUR A1 - Denner, Ansgar A1 - Lang, Jean-Nicolas A1 - Uccirati, Sandro T1 - NLO electroweak corrections in extended Higgs sectors with RECOLA2 JF - Journal of High Energy Physics N2 - We present the computer code RECOLA2 along with the first NLO electroweak corrections to Higgs production in vector-boson fusion and updated results for Higgs strahlung in the Two-Higgs-Doublet Model and Higgs-Singlet extension of the Standard Model. A fully automated procedure for the generation of tree-level and one-loop matrix elements in general models, including renormalization, is presented. We discuss the application of the Background-Field Method to the extended models. Numerical results for NLO electroweak cross sections are presented for different renormalization schemes in the Two-Higgs-Doublet Model and the Higgs-Singlet extension of the Standard Model. Finally, we present distributions for the production of a heavy Higgs boson. KW - NLO computations KW - phenomenological models KW - Higgs boson Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170673 VL - 7 IS - 87 ER -