TY - JOUR A1 - Wanzek, Katharina A1 - Schwindt, Eike A1 - Capra, John A. A1 - Paeschke, Katrin T1 - Mms1 binds to G-rich regions in Saccharomyces cerevisiae and influences replication and genome stability JF - Nucleic Acids Research N2 - The regulation of replication is essential to preserve genome integrity. Mms1 is part of the E3 ubiquitin ligase complex that is linked to replication fork progression. By identifying Mms1 binding sites genome-wide in Saccharomyces cerevisiae we connected Mms1 function to genome integrity and replication fork progression at particular G-rich motifs. This motif can form G-quadruplex (G4) structures in vitro. G4 are stable DNA structures that are known to impede replication fork progression. In the absence of Mms1, genome stability is at risk at these G-rich/G4 regions as demonstrated by gross chromosomal rearrangement assays. Mms1 binds throughout the cell cycle to these G-rich/G4 regions and supports the binding of Pif1 DNA helicase. Based on these data we propose a mechanistic model in which Mms1 binds to specific G-rich/G4 motif located on the lagging strand template for DNA replication and supports Pif1 function, DNA replication and genome integrity. KW - replication KW - regulation KW - genome integrity KW - Saccharomyces cerevisiae Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170577 VL - 45 IS - 13 ER - TY - JOUR A1 - Lüningschrör, Patrick A1 - Binotti, Beyenech A1 - Dombert, Benjamin A1 - Heimann, Peter A1 - Perez-Lara, Angel A1 - Slotta, Carsten A1 - Thau-Habermann, Nadine A1 - von Collenberg, Cora R. A1 - Karl, Franziska A1 - Damme, Markus A1 - Horowitz, Arie A1 - Maystadt, Isabelle A1 - Füchtbauer, Annette A1 - Füchtbauer, Ernst-Martin A1 - Jablonka, Sibylle A1 - Blum, Robert A1 - Üçeyler, Nurcan A1 - Petri, Susanne A1 - Kaltschmidt, Barbara A1 - Jahn, Reinhard A1 - Kaltschmidt, Christian A1 - Sendtner, Michael T1 - Plekhg5-regulated autophagy of synaptic vesicles reveals a pathogenic mechanism in motoneuron disease JF - Nature Communications N2 - Autophagy-mediated degradation of synaptic components maintains synaptic homeostasis but also constitutes a mechanism of neurodegeneration. It is unclear how autophagy of synaptic vesicles and components of presynaptic active zones is regulated. Here, we show that Pleckstrin homology containing family member 5 (Plekhg5) modulates autophagy of synaptic vesicles in axon terminals of motoneurons via its function as a guanine exchange factor for Rab26, a small GTPase that specifically directs synaptic vesicles to preautophagosomal structures. Plekhg5 gene inactivation in mice results in a late-onset motoneuron disease, characterized by degeneration of axon terminals. Plekhg5-depleted cultured motoneurons show defective axon growth and impaired autophagy of synaptic vesicles, which can be rescued by constitutively active Rab26. These findings define a mechanism for regulating autophagy in neurons that specifically targets synaptic vesicles. Disruption of this mechanism may contribute to the pathophysiology of several forms of motoneuron disease. KW - autophagy KW - synaptic vesicles KW - Pleckstrin homology containing family member 5 (Plekhg5) KW - regulation KW - motoneuron disease Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170048 VL - 8 IS - 678 ER -