TY - JOUR A1 - Born, Dennis-Peter A1 - Zinner, Christoph A1 - Sperlich, Billy T1 - The mucosal immune function is not compromised during a period of high-intensity interval training. Is it time to reconsider an old assumption? JF - Frontiers in Physiology N2 - Purpose: The aim of the study was to evaluate the mucosal immune function and circadian variation of salivary cortisol, Immunoglobin-A (sIgA) secretion rate and mood during a period of high-intensity interval training (HIIT) compared to long-slow distance training (LSD). Methods: Recreational male runners (n = 28) completed nine sessions of either HIIT or LSD within 3 weeks. The HIIT involved 4 × 4 min of running at 90–95% of maximum heart rate interspersed with 3 min of active recovery while the LSD comprised of continuous running at 70–75% of maximum heart rate for 60–80 min. The psycho-immunological stress-response was investigated with a full daily profile of salivary cortisol and immunoglobin-A (sIgA) secretion rate along with the mood state on a baseline day, the first and last day of training and at follow-up 4 days after the last day of training. Before and after the training period, each athlete's running performance and peak oxygen uptake (V·O\(_{2peak}\)) was determined with an incremental exercise test. Results: The HIIT resulted in a longer time-to-exhaustion (P = 0.02) and increased V·O\(_{2peak}\) compared to LSD (P = 0.01). The circadian variation of sIgA secretion rate showed highest values in the morning immediately after waking up followed by a decrease throughout the day in both groups (P < 0.05). With HIIT, the wake-up response of sIgA secretion rate was higher on the last day of training (P < 0.01) as well as the area under the curve (AUC\(_{G}\)) higher on the first and last day of training and follow-up compared to the LSD (P = 0.01). Also the AUC\(_{G}\) for the sIgA secretion rate correlated with the increase in V·O\(_{2peak}\) and running performance. The AUC\(_{G}\) for cortisol remained unaffected on the first and last day of training but increased on the follow-up day with both, HIIT and LSD (P < 0.01). Conclusion: The increased sIgA secretion rate with the HIIT indicates no compromised mucosal immune function compared to LSD and shows the functional adaptation of the mucosal immune system in response to the increased stress and training load of nine sessions of HIIT. KW - high-volume training KW - periodization KW - circadian rhythm KW - cortisol KW - diurnal profile KW - endurance KW - immunoglobin-A Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158025 VL - 8 IS - 485 ER - TY - JOUR A1 - Kilian, Yvonne A1 - Wehmeier, Udo F. A1 - Wahl, Patrick A1 - Mester, Joachim A1 - Hilberg, Thomas A1 - Sperlich, Billy T1 - Acute Response of Circulating Vascular Regulating MicroRNAs during and after High-Intensity and High-Volume Cycling in Children JF - Frontiers in Physiology N2 - Aim: The aim of the present study was to analyze the response of vascular circulating microRNAs (miRNAs; miR-16, miR-21, miR-126) and the VEGF mRNA following an acute bout of HIIT and HVT in children. Methods: Twelve healthy competitive young male cyclists (14.4 ± 0.8 years; 57.9 ± 9.4 ml•min−1•kg−1 peak oxygen uptake) performed one session of high intensity 4 × 4 min intervals (HIIT) at 90–95% peak power output (PPO), each interval separated by 3 min of active recovery, and one high volume session (HVT) consisting of a constant load exercise for 90 min at 60% PPO. Capillary blood from the earlobe was collected under resting conditions, during exercise (d1 = 20 min, d2 = 30 min, d3 = 60 min), and 0, 30, 60, 180 min after the exercise to determine miR-16, -21, -126, and VEGF mRNA. Results: HVT significantly increased miR-16 and miR-126 during and after the exercise compared to pre-values, whereas HIIT showed no significant influence on the miRNAs compared to pre-values. VEGF mRNA significantly increased during and after HIIT (d1, 30′, 60′, 180′) and HVT (d3, 0′, 60′). Conclusion: Results of the present investigation suggest a volume dependent exercise regulation of vascular regulating miRNAs (miR-16, miR-21, miR-126) in children. In line with previous data, our data show that acute exercise can alter circulating miRNAs profiles that might be used as novel biomarkers to monitor acute and chronic changes due to exercise in various tissues. KW - children KW - endurance KW - exercise KW - microRNAs KW - training adaptation Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-165261 VL - 7 IS - 92 ER -