TY - JOUR A1 - Gil-Sepulcre, Marcos A1 - Lindner, Joachim O. A1 - Schindler, Dorothee A1 - Velasco, Lucía A1 - Moonshiram, Dooshaye A1 - Rüdiger, Olaf A1 - DeBeer, Serena A1 - Stepanenko, Vladimir A1 - Solano, Eduardo A1 - Würthner, Frank A1 - Llobet, Antoni T1 - Surface-promoted evolution of Ru-bda coordination oligomers boosts the efficiency of water oxidation molecular anodes JF - Journal of the American Chemical Society N2 - A new Ru oligomer of formula {[Ru-\(^{II}\)(bda-\(\kappa\)-N\(^2\)O\(^2\))(4,4'-bpy)]\(_{10}\)(4,4'-bpy)}, 10 (bda is [2,2'-bipyridine]-6,6'-dicarbox-ylate and 4,4'-bpy is 4,4'-bipyridine), was synthesized and thoroughly characterized with spectroscopic, X-ray, and electrochemical techniques. This oligomer exhibits strong affinity for graphitic materials through CH-\(\pi\) interactions and thus easily anchors on multiwalled carbon nanotubes (CNT), generating the molecular hybrid material 10@CNT. The latter acts as a water oxidation catalyst and converts to a new species, 10'(H\(_2\)O)\(_2\)@CNT, during the electrochemical oxygen evolution process involving solvation and ligand reorganization facilitated by the interactions of molecular Ru catalyst and the surface. This heterogeneous system has been shown to be a powerful and robust molecular hybrid anode for electrocatalytic water oxidation into molecular oxygen, achieving current densities in the range of 200 mA/cm\(^2\) at pH 7 under an applied potential of 1.45 V vs NHE. The remarkable long-term stability of this hybrid material during turnover is rationalized based on the supramolecular interaction of the catalyst with the graphitic surface. KW - electrodes KW - ligands KW - oligomers KW - surface interactions KW - water oxidation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-351514 VL - 143 IS - 30 ER - TY - JOUR A1 - Schindler, Dorothee A1 - Meza-Chincha, Anna-Lucia A1 - Roth, Maximilian A1 - Würthner, Frank T1 - Structure-Activity Relationship for Di- up to Tetranuclear Macrocyclic Ruthenium Catalysts in Homogeneous Water Oxidation JF - Chemistry—A European Journal N2 - Two di- and tetranuclear Ru(bda) (bda: 2,2′-bipyridine-6,6′-dicarboxylate) macrocyclic complexes were synthesized and their catalytic activities in chemical and photochemical water oxidation investigated in a comparative manner to our previously reported trinuclear congener. Our studies have shown that the catalytic activities of this homologous series of multinuclear Ru(bda) macrocycles in homogeneous water oxidation are dependent on their size, exhibiting highest efficiencies for the largest tetranuclear catalyst. The turnover frequencies (TOFs) have increased from di- to tetranuclear macrocycles not only per catalyst molecule but more importantly also per Ru unit with TOF of 6 \(^{-1}\) to 8.7 \(^{-1}\) and 10.5 s\(^{-1}\) in chemical and 0.6 s\(^{-1}\) to 3.3 \(^{-1}\) and 5.8 \(^{-1}\) in photochemical water oxidation per Ru unit, respectively. Thus, for the first time, a clear structure–activity relationship could be established for this novel class of macrocyclic water oxidation catalysts. KW - homogeneous catalysis KW - water oxidation KW - ruthenium catalysts KW - renewable fuels KW - metallomacrocycles Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-256792 VL - 27 IS - 68 ER - TY - JOUR A1 - Würthner, Frank A1 - Noll, Niklas T1 - A Calix[4]arene‐Based Cyclic Dinuclear Ruthenium Complex for Light‐Driven Catalytic Water Oxidation JF - Chemistry - A European Journal N2 - A cyclic dinuclear ruthenium(bda) (bda: 2,2’‐bipyridine‐6,6’‐dicarboxylate) complex equipped with oligo(ethylene glycol)‐functionalized axial calix[4]arene ligands has been synthesized for homogenous catalytic water oxidation. This novel Ru(bda) macrocycle showed significantly increased catalytic activity in chemical and photocatalytic water oxidation compared to the archetype mononuclear reference [Ru(bda)(pic)\(_2\)]. Kinetic investigations, including kinetic isotope effect studies, disclosed a unimolecular water nucleophilic attack mechanism of this novel dinuclear water oxidation catalyst (WOC) under the involvement of the second coordination sphere. Photocatalytic water oxidation with this cyclic dinuclear Ru complex using [Ru(bpy)\(_3\)]Cl\(_2\) as a standard photosensitizer revealed a turnover frequency of 15.5 s\(^{−1}\) and a turnover number of 460. This so far highest photocatalytic performance reported for a Ru(bda) complex underlines the potential of this water‐soluble WOC for artificial photosynthesis. KW - water KW - oxidation KW - ruthenium KW - dinuclear KW - catalytic KW - artificial photosynthesis KW - homogenous catalysis KW - photocatalysis KW - ruthenium complexes KW - water oxidation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-230030 UR - https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/chem.202004486 VL - 27 IS - 1 ER - TY - JOUR A1 - Würthner, Frank A1 - Meza-Chincha, Ana-Lucia A1 - Schindler, Dorothee A1 - Natali, Mirco T1 - Effects of Photosensitizers and Reaction Media on Light‐Driven Water Oxidation with Trinuclear Ruthenium Macrocycles JF - ChemPhotoChem N2 - Photocatalytic water oxidation is a promising process for the production of solar fuels and the elucidation of factors that influence this process is of high significance. Thus, we have studied in detail light‐driven water oxidation with a trinuclear Ru(bda) (bda: 2,2’‐bipyridine‐6,6’‐dicarboxylate) macrocycle MC3 and its highly water soluble derivative m‐CH\(_2\)NMe\(_2\)‐MC3 using a series of ruthenium tris(bipyridine) complexes as photosensitizers under varied reaction conditions. Our investigations showed that the catalytic activities of these Ru macrocycles are significantly affected by the choice of photosensitizer (PS) and reaction media, in addition to buffer concentration, light intensity and concentration of the sensitizer. Our steady‐state and transient spectroscopic studies revealed that the photocatalytic performance of trinuclear Ru(bda) macrocycles is not limited by their intrinsic catalytic activities but rather by the efficiency of photogeneration of oxidant PS\(^+\) and its ability to act as an oxidizing agent to the catalysts as both are strongly dependent on the choice of photosensitizer and the amount of employed organic co‐solvent. KW - photosenitizers KW - water oxidation KW - ruthenium complexes KW - macrocycles KW - trinuclear KW - homogenous catalysis KW - photocatalysis Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-230116 VL - 5 IS - 2 ER -