TY - THES A1 - Prell, Andreas T1 - The effects of paternal age on DNA methylation of developmentally important genes in human and bovine sperm T1 - Der väterliche Alterseffekt auf DNA-Methylierung in entwicklungsrelevanten Genen im menschlichen und bovinen Spermienepigenom N2 - Western societies are steadily becoming older undergoing a clear trend of delayed parenthood. Children of older fathers have an undeniably higher risk for certain neurodevelopmental disorders and other medical conditions. Changes in the epigenetic landscape and especially in DNA methylation patterns are likely to account for a portion of this inherited disease susceptibility. DNA methylation changes during the ageing process are a well-known epigenetic feature. These so-called age-DMRs exist in developmentally important genes in the methylome of several mammalian species. However, there is only a minor overlap between the age-DMR datasets of different studies. We therefore replicated age-DMRs (which were obtained from a genome wide technique) by applying a different technical approach in a larger sample number. Here, this study confirmed 10 age-DMRs in the human and 4 in the bovine sperm epigenome from a preliminary candidate list based on RRBS. For this purpose, we used bisulphite Pyrosequencing in 94 human and 36 bovine sperm samples. These Pyrosequencing results confirm RRBS as an effective and reliable method to screen for age-DMRs in the vertebrate genome. To decipher whether paternal age effects are an evolutionary conserved feature of mammalian development, we compared methylation patterns between human and bovine sperm in orthologous regulatory regions. We discovered that the level of methylation and the age effect are both species-specific and speculate that these methylation marks reflect the lineage-specific development of each species to hit evolutionary requirements and adaptation processes. Different methylation levels between species in developmentally important genes also imply a differing mutational burden, representing a potential driver for point mutations and consequently deviations in the underlying DNA sequence of different species. Using the example of different haplotypes, this study showed the great effect of single base variations on the methylation of adjacent CpGs. Nonetheless, this study could not provide further evidence or a mechanism for the transfer of epigenetic marks to future generations. Therefore, further research in tissues from the progeny of old and young fathers is required to determine if the observed methylation changes are transmitted to the next generation and if they are associated with altered transcriptional activity of the respective genes. This could provide a direct link between the methylome of sperm from elderly fathers and the development potential of the next generation. N2 - Unsere westliche Gesellschaft wird immer älter und unterliegt einem eindeutigen Trend zur verzögerten Elternschaft. Kinder von älteren Vätern haben ein unbestreitbar höheres Risiko für bestimmte neurologische Entwicklungsstörungen und andere Erkrankungen. Epigenetische Veränderungen insbesondere im DNA-Methylierungsmuster sind wahrscheinlich für einen Teil dieser vererbten Krankheitsanfälligkeit verantwortlich. Altersbedingte Veränderungen im DNA-Methylierungsmuster sind ein bekanntes und gut erforschtes Phänomen in der Epigenetik. Diese so genannten Alters-DMRs konnten im Methylom mehrerer Säugetierarten nachgewiesen werden, insbesondere in entwicklungsrelevanten Genen. Allerdings gibt es nur geringe Überschneidungen zwischen den Alters-DMR-Datensätzen verschiedener Studien. Unser Ziel war es daher, die Vertrauenswürdigkeit eines laborinternen Datensatzes, der auf Reduced Representation Bisulphite Sequencing (RRBS) basierte, zu erhöhen, indem wir einen anderen technischen Ansatz in einer unabhängigen Kohorte anwenden. Mit der Methode des Bisulphite Pyrosequencing konnten wir in dieser Studie 10 Alters-DMRs im menschlichen und 4 im Rinder-Spermienepigenom aus einer vorläufigen Kandidatenliste basierend auf RRBS validieren. Diese Ergebnisse bestätigen, dass RRBS eine wirksame und zuverlässige Methode ist, um neue Alters-DMRs im Wirbeltiergenom zu finden. Um festzustellen, ob väterliche Alterseffekte in der Evolution verschiedener Säugetierarten konserviert wurden, verglichen wir die Methylierungsmuster orthologer Regionen zwischen dem menschlichem und dem Rinderspermienepigenom. Es zeigte sich, dass sowohl der Methylierungsgrad als auch der Alterseffekt artspezifisch sind. Daher vermuten wir, dass diese Methylierungsmuster die artspezifische Entwicklung als Antwort auf evolutionäre Anforderungen und durchlebte Anpassungsprozesse darstellen. Diese unterschiedlichen Methylierungslevel zwischen verschiedenen Arten in entwicklungswichtigen Genen implizieren auch eine unterschiedliche Mutationslast, die einen potenziellen Treiber für Punktmutationen und folglich Abweichungen in der zugrunde liegenden DNA-Sequenz der verschiedenen Arten darstellt. Am Beispiel verschiedener Haplotypen konnten wir exemplarisch den ausgeprägten Einfluss bereits einzelner DNA-Basenvariationen auf die Methylierung benachbarter CpGs demonstrieren. Allerdings konnte diese Studie keinen weiteren Beweis oder einen Mechanismus für die Übertragung von epigenetischen Markierungen auf künftige Generationen liefern. Daher sind weitere Untersuchungen an embryonalen, fötalen und adulten Geweben von Nachkommen alter bzw. junger Väter unabdingbar, um festzustellen, ob die beobachteten Methylierungsveränderungen auch auf die nächste Generation übertragen werden. Ferner ist festzustellen, ob sie die Transkriptionsaktivität der betroffenen Gene beeinflussen. Dies könnte einen direkten Einfluss des Spermienmethyloms älterer Väter auf das Entwicklungspotenzial der nächsten Generation belegen. KW - Epigenetik KW - Spermium KW - Methylierung KW - DNA-Methylation KW - Paternal age effect Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-347866 ER - TY - THES A1 - Reichenbach, Juliane Renate T1 - Paternal age effects on sperm DNA methylation and its impact on the next generation T1 - Der väterliche Alterseffekt auf das Spermienmethylom und seine Auswirkungen auf die nächste Generation N2 - The effect of late parenthood on the offspring´s physical and mental health status has recently become an increasingly important topic of discussion. Studies on neurodevelopmental disorders in children of older parents (Naserbakht et al., 2011) outline the negative consequences of aging fathers as unpredictable compared to the better-understood unfavorable maternal influences (Cedars et al. 2015). This may be due to the fact that lifelong production of male gametes becomes more susceptible to error, not only for somatic mutations. Non-genomic mechanisms such as epigenetic methylation also alter DNA dynamically throughout life (Jones et al., 2015) and influence the aging human sperm DNA (Jenkins et al., 2014). These methylation changes may be transmitted to the next generation via epigenetic inheritance mechanisms (Milekic et al., 2015), which may negatively impact the sensitive epigenetic regulation of cell differentiation in the embryonic period (Curley et al., 2011; Spiers et al., 2015). Accordingly, Nardone et al. (2014) reported several hypomethylated regions in autistic patients, illustrating potential epigenetic influences on the multifactorial pathogenesis of neuropsychiatric disorders. In the present study, the methylation status of five gene regions in the sperm DNA of males of different ages was analyzed by two techniques - pyrosequencing and deep bisulfite sequencing. Two gene regions, FOXK1 and DMPK, showed a highly significant age-related methylation loss and FOXK1 a reduced methylation variation at the level of single alleles. In addition, the examined gene region of FOXK1 showed significant methylation changes in the fetal cord blood DNA of the respective offspring of the sperm donor. This fact suggests a transfer of age-related methylation loss to the next generation. Interestingly, a methylation analysis at the level of single alleles showed that the methylation loss was inherited exclusively by the father. FOXK1 is a transcription factor that plays an important role in the epigenetic regulation of the cell cycle during embryonic neuronal development (Huang et al., 2004; Wijchers et al., 2006). For this reason, the methylation status of FOXK1 in the blood of autistic patients and an age- and sex-matched control group was investigated. While both groups showed age-associated FOXK1 methylation loss, a faster dynamics of methylation change was observed in the autistic group. Although further studies are needed to uncover inheritance mechanisms of epigenetic information, the present results show an evident influence of age-related methylation changes on offspring. When advising future fathers, it is important to consider how the paternal epigenome is altered by aging and can have a negative impact on the developing embryo. N2 - Die Auswirkungen einer späten Elternschaft auf die körperliche und geistige Gesundheit der Nachkommen wurde in letzter Zeit zunehmend diskutiert. Studien zu neurologischen Entwicklungsstörungen bei Kindern älterer Eltern (Naserbakht et al. 2011) skizzieren insbesondere die negativen Folgen alternder Väter (Cedars et al. 2015). Dies ist möglicherweise darauf zurückzuführen, dass die lebenslange Produktion männlicher Gameten im Laufe des Lebens nicht nur für somatische Mutationen fehleranfälliger wird. Auch nicht-genomische Mechanismen wie die epigenetische Methylierung verändert die DNA im Laufe des Lebens dynamisch (Jones et al. 2015) und beeinflussen die alternde menschliche Spermien-DNA (Jenkins et al. 2014). Möglicherweise werden diese Methylierungsveränderungen über epigenetische Vererbungsmechanismen an die nächste Generation übertragen (Milekic et al. 2015), was sich negativ auf die empfindliche epigenetische Regulation der Zelldifferenzierung in der Embryonalperiode auswirken kann (Curley et al. 2011; Spiers et al. 2015). Mögliche epigenetische Einflüsse auf die multifaktorielle Pathogenese neuropsychiatrischer Erkrankungen veranschaulichend, zeigten Nardone et al. (2014) mehrere hypomethylierte Regionen bei autistischen Patienten auf. In der vorliegenden Arbeit wurde der Methylierungsstatus von fünf Genregionen in der Spermien-DNA von Männern unterschiedlichen Alters durch zwei Techniken analysiert – das Pyrosequencing und das Deep Bisulfite Sequencing. Zwei Genregionen, FOXK1 und DMPK, zeigten einen hochgradig signifikanten altersbedingten Methylierungsverlust und FOXK1 auf der Ebene einzelner Allele eine verringerte Methylierungsvariation. Darüber hinaus zeigte die untersuchte Genregion von FOXK1 signifikante Methylierungsveränderungen in der Nabelschnurblut-DNA der jeweiligen Nachkommen der Samenspender. Diese Tatsache spricht für eine Übertragung des altersbedingten Methylierungsverlustes auf die nächste Generation. Anhand einer Methylierungsanalyse auf der Ebene einzelner Allele konnte interessanterweise gezeigt werden, dass der Methylierungsverlust ausschließlich durch den Vater vererbt wurde. FOXK1 ist ein Transkriptionsfaktor, der eine wichtige Rolle bei der epigenetischen Regulation des Zellzyklus während der embryonalen neuronalen Entwicklung spielt (Huang et al. 2004; Wijchers et al. 2006). Aus diesem Grund wurde der Methylierungsstatus von FOXK1 im Blut autistischer Patienten und einer alters- und geschlechtsentsprechenden Kontrollgruppe untersucht. Während beide Gruppen einen altersassoziierten FOXK1-Methylierungverlust zeigten, wurde in der autistischen Gruppe eine schnellere Dynamik der Methylierungsänderung beobachtet. Obwohl weitere Studien erforderlich sind, um Vererbungsmechanismen epigenetischer Information aufzudecken, zeigen die vorliegenden Ergebnisse einen offensichtlichen Einfluss altersbedingter Methylierungsveränderungen auf die Nachkommen. Bei der Beratung zukünftiger Väter ist es wichtig zu berücksichtigen, wie das väterliche Epigenom durch das Altern verändert wird und negative Auswirkungen auf den sich entwickelnden Embryo haben kann. KW - Epigenetik KW - Vater KW - Spermium KW - Autismus KW - Methylierung KW - paternal age KW - epigenetics KW - sperm KW - methylation KW - reproduction KW - autism KW - Väterliches Alter KW - Epigenetik KW - Spermien KW - Methylierung Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-199805 ER - TY - THES A1 - Neveling, Kornelia T1 - Molecular causes and consequences of genetic instability with respect to the FA/BRCA Caretaker Pathway T1 - Molekulargenetische Ursachen und Folgen genetischer Instabilität am Beispiel des FA/BRCA Caretaker Pathways N2 - In the context of this thesis, I investigated the molecular causes and functional consequences of genetic instability using a human inherited disease, Fanconi anemia. FA patients display a highly variable clinical phenotype, including congenital abnormalities, progressive bone marrow failure and a high cancer risk. The FA cellular phenotype is characterized by spontaneous and inducible chromosomal instability, and a typical S/G2 phase arrest after exposure to DNA-damaging agents. So far, 13 genes have been identified, whose biallelic (or, in the case of X-linked FANCB, hemizygous) mutations cause this multisystem disorder. The FA proteins interact in a multiprotein network, instrumental and essential in the cellular response to DNA damage. A more comprehensive summary of Fanconi anemia and its myriad clinical, cellular and molecular manifestations is provided in the introduction section of this thesis. The results of my experimental work are presented as published papers and manuscripts ready to be submitted. In the first publication, I investigated the connection between FA genes and bladder tumors. The question I tried to answer was whether a disruption of the FA/BRCA pathway may be a frequent and possibly causal event in bladder cancer, explaining the hypersensitivity of these cells to DNA-crosslinking agents. On the basis of my experimental data I arrived at the conclusion that disruption of the FA/BRCA pathway might be detrimental rather than advantageous for the majority tumor types by rendering them vulnerable towards DNA damaging agents and oxidative stress. The second publication deals with the gene coding for the core complex protein FANCE and tries to answer the question why FANCE is so rarely affected among FA-patients. The conclusion from these studies is that like FANCF, FANCE functions as a probable adaptor protein with a high tolerance towards amino acid substitutions which would explain the relative rareness of FA-E patients. I have also investigated the FANCL gene whose product functions as the catalytic subunit of the E3 ligase. The third publication addresses this issue by providing the first comprehensive description of genetic alterations and phenotypic manifestations in a series of three FA-L patients. The results of my study show that genetic alterations of FANCL are compatible with survival, these alterations may include large deletions such as so far common only in the FANCA gene, FA-L phenotypes can be mild to severe, and FANCL belongs to the group of FA genes that may undergo somatic reversion. The central protein of the FA/BRCA network, FANCD2, is the subject of the fourth publication presented in this thesis. Most importantly, we were able to show that there are no biallelic null mutations in FANCD2. Correspondingly, residual protein of both FANCD2-isotypes (FANCD2-S and FANCD2-L) was present in all available patient cell lines. This suggests that complete abrogation of the FANCD2 protein cannot be tolerated and causes early embryonic lethality. There are at least three FA proteins that are not required for the posttranslational modification of FANCD2. One of these proteins is the 5’-3’ helicase BRIP1 (BRCA1-interacting protein 1), a protein that interacts directly with the breast cancer susceptibility protein BRCA1. I participated in the identification of BRIP1 as the FA protein FANCJ. This discovery is described in the fifth publication of this thesis. The newly discovered protein BRIP1/FANCJ seems to act as one of the mediators of genomic maintenance downstream of FANCD2. Another protein identified downstream of FANCD2 is PALB2. PALB2 was originally discovered as “partner and localizer of BRCA2”. In a candidate gene approach we tested patients with early childhood cancers but without mutations in BRCA2 for mutations in PALB2 (publication 6). PALB2 was identified as a novel FA gene and designated FANCN. FA-N patients are very severely affected. The last publication included in my thesis describes the identification of the FA gene FANCI as the second monoubiquitinated member of the FA/BRCA pathway (publication 7). We identified biallelic mutations in KIAA1794 in four FA patients, thus proving the genuine FA-nature of this candidate sequence. The general discussion provides a synopsis of the results and conclusions of my work with the state of art of FA research. N2 - Im Rahmen der vorliegenden Dissertation wurden molekulare Ursachen und funktionale Konsequenzen genetischer Instabilität am Beispiel der menschlichen Erbkrankheit Fanconi Anämie (FA) untersucht. FA Patienten zeigen einen sehr variablen klinischen Phänotyp, der in der Regel angeborene Fehlbildungen, progressives Knochenmarkversagen und ein hohes Risiko für Tumorerkrankungen beinhaltet. Der zelluläre Phänotyp der FA ist durch eine spontane und induzierbare chromosomale Instabilität und einen typischen S/G2-Phasen-Arrest nach Exposition mit DNA-schädigenden Agentien charakterisiert. Biallelische oder -im Fall des X-chromosomalen FANCB- hemizygote Mutationen, die zu dieser Erkrankung führen, wurden in bislang 13 Genen identifiziert. Die FA Proteine arbeiten in einem gemeinsamen Netzwerk und sind essentiell beteiligt an der zellulären Antwort auf DNA Schädigung. Eine umfassendere Übersicht über Fanconi Anämie und ihre vielfältigen klinischen, zellulären und molekularen Erscheinungsformen ist in der Einleitung dieser Dissertation gegeben. Die Ergebnisse meiner experimentellen Arbeiten sind in Form von publizierten Fachartikeln und fertigen Manuskripten dargestellt. In der ersten Publikation habe ich den Zusammenhang von FA Genen und Harnblasentumoren untersucht. Die Frage, die ich zu beantworten versucht habe, war, ob ein Defekt im FA/BRCA Weg eine mögliche Ursache für die Entstehung von Blasentumoren sein könnte. Aufgrund meiner experimentellen Daten bin ich zu dem Schluss gekommen, dass ein Defekt im FA/BRCA Weg für einen Tumor vermutlich eher schädlich als vorteilhaft ist, da so ein Defekt den Tumor gegenüber DNA-schädigenden Agentien und oxidativem Stress anfällig machen würde. Meine zweite Publikation befasst sich mit dem Kern-Komplex Protein FANCE und versucht die Frage zu beantworten, warum das FANCE Gen in so wenigen FA Patienten betroffen ist. Die Schlussfolgerung dieser Arbeit war, dass FANCE vermutlich genauso wie FANCF im Kern-Komplex die Rolle eines Adaptor-Proteins mit einer hohen Toleranz gegenüber Aminosäure-Austauschen innehat, was die relative Seltenheit von Patienten dieser Untergruppe erklären könnte. Ich habe weiterhin das FANCL Gen untersucht, dessen Produkt als katalytische Untereinheit der E3-Ligase fungiert. Die dritte Publikation in dieser Dissertation befasst sich mit diesem Thema und enthält eine umfassende Beschreibung von genetischen Veränderungen und phänotypischen Auswirkungen in einer Gruppe von 3 FA-L Patienten. Die Ergebnisse meiner Arbeit haben allerdings gezeigt, dass genetische Veränderungen in FANCL mit dem Leben vereinbar sind, dass diese Veränderungen sehr große Deletionen beinhalten können, was bisher nur für FANCA gezeigt werden konnte, dass FA-L Phänotypen von mild bis schwer betroffen reichen können und dass FANCL zu den Genen gehört, in denen somatische Reversionen stattfinden. Das Schlüsselprotein des FA/BRCA Netzwerks, FANCD2, ist das Thema der vierten Publikation in dieser Dissertation. Insbesondere konnten wir zeigen, dass es keine biallelischen Nullmutationen in FANCD2 zu geben scheint. Dementsprechend war Restprotein von beiden FANCD2-Isoformen, FANCD2-L und FANCD2-S, in allen verfügbaren Patienten-Zelllinien nachweisbar. Dies ließ vermuten, dass ein komplettes Fehlen des FANCD2 Proteins nicht tolerierbar ist und frühe embryonale Letalität verursacht. Es mindestens drei Proteine, die nicht für diese posttranslationale Modifikation benötigt werden. Eines dieser Proteine ist die 5’-3’ Helikase BRIP1 (BRCA1-interagierendes Protein 1), ein Protein, das direkt mit dem Brustkrebs-assoziierten Protein BRCA1 interagiert. Ich war an der Identifizierung von BRIP1 als FA Protein (FANCJ) beteiligt. Diese Entdeckung ist in der fünften Publikation meiner Dissertation beschrieben. Das neu entdeckte Protein BRIP1/FANCJ, das direkt mit BRCA1 interagiert, scheint als einer der Mediatoren zur Aufrechterhaltung genomischer Stabilität downstream von FANCD2 zu wirken. Ein weiteres Protein downstream von FANCD2 ist PALB2. PALB2 wurde ursprünglich als „Partner und Lokalisierer von BRCA2“ entdeckt. In einer Kandidatengen-Studie haben wir Patienten mit frühkindlichen Tumoren, aber ohne Mutationen in BRCA2, auf Mutationen in PALB2 untersucht (Publikation 6). Aufgrund unserer Ergebnisse haben wir PALB2 als ein neues FA Gen identifiziert und haben es FANCN genannt. Genauso wie FA-D1 Patienten sind FA-N Patienten sehr schwer betroffen. Die letzte Publikation meiner Dissertation beschreibt die Identifikation des FA Genes FANCI, dessen Produkt das zweite monoubiquitinierte Mitglied des FA/BRCA Weges darstellt (Publikation 7). Wir haben in vier Patienten biallelische Mutationen in KIAA1794 gefunden, und so zeigen können, dass KIAA1794 wirklich ein FA Gen ist. Die generelle Diskussion birgt eine Synopsis der Ergebnisse und Schlussfolgerungen meiner Forschung mit dem aktuellen Wissensstand über FA. KW - Fanconi-Anämie KW - DNS-Reparatur KW - Chromosomenbruch KW - Blasentumor KW - Brustkrebs KW - Methylierung KW - DNA-Instabilitätssyndrom KW - Mutationsanalyse KW - DNA-Quervernetzung KW - Genetik KW - Zellzyklus KW - Fanconi anemia KW - DNA repair KW - chromsomal instability KW - interstrand crosslink Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-27383 ER -