TY - JOUR A1 - Mayr, Antonia V. A1 - Peters, Marcell K. A1 - Eardley, Connal D. A1 - Renner, Marion E. A1 - Röder, Juliane A1 - Steffan-Dewenter, Ingolf T1 - Climate and food resources shape species richness and trophic interactions of cavity-nesting Hymenoptera JF - Journal of Biogeography N2 - Aim: Temperature, food resources and top‐down regulation by antagonists are considered as major drivers of insect diversity, but their relative importance is poorly understood. Here, we used cavity‐nesting communities of bees, wasps and their antagonists to reveal the role of temperature, food resources, parasitism rate and land use as drivers of species richness at different trophic levels along a broad elevational gradient. Location: Mt. Kilimanjaro, Tanzania. Taxon: Cavity‐nesting Hymenoptera (Hymenoptera: Apidae, Colletidae, Megachilidae, Crabronidae, Sphecidae, Pompilidae, Vespidae). Methods: We established trap nests on 25 study sites that were distributed over similar large distances in terms of elevation along an elevational gradient from 866 to 1788 m a.s.l., including both natural and disturbed habitats. We quantified species richness and abundance of bees, wasps and antagonists, parasitism rates and flower or arthropod food resources. Data were analysed with generalized linear models within a multi‐model inference framework. Results: Elevational species richness patterns changed with trophic level from monotonically declining richness of bees to increasingly humped‐shaped patterns for caterpillar‐hunting wasps, spider‐hunting wasps and antagonists. Parasitism rates generally declined with elevation but were higher for wasps than for bees. Temperature was the most important predictor of both bee and wasp host richness patterns. Antagonist richness patterns were also well predicted by temperature, but in contrast to host richness patterns, additionally by resource abundance and diversity. The conversion of natural habitats through anthropogenic land use, which included biomass removal, agricultural inputs, vegetation structure and percentage of surrounding agricultural habitats, had no significant effects on bee and wasp communities. Main conclusions: Our study underpins the importance of temperature as a main driver of diversity gradients in ectothermic organisms and reveals the increasingly important role of food resources at higher trophic levels. Higher parasitism rates at higher trophic levels and at higher temperatures indicated that the relative importance of bottom‐up and top‐down drivers of species richness change across trophic levels and may respond differently to future climate change. KW - land-use change KW - species richness KW - trophic levels KW - wasps KW - feeding guilds KW - antagonists KW - bees KW - bottom‐up and top‐down control KW - elevational gradients Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-208101 VL - 47 IS - 4 ER - TY - JOUR A1 - Federico, Stephanie A1 - Redenti, Sara A1 - Sturlese, Mattia A1 - Ciancetta, Antonella A1 - Kachler, Sonja A1 - Klotz, Karl-Norbert A1 - Cacciari, Barbara A1 - Moro, Stefano A1 - Spalluto, Giampiero T1 - The Influence of the 1-(3-Trifluoromethyl-Benzyl)-1H-Pyrazole-4-yl Moiety on the Adenosine Receptors Affinity Profile of Pyrazolo[4,3-e][1,2,4]Triazolo[1,5-c]Pyrimidine Derivatives JF - PLoS One N2 - A new series of pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidine (PTP) derivatives has been developed in order to explore their affinity and selectivity profile at the four adenosine receptor subtypes. In particular, the PTP scaffold was conjugated at the C2 position with the 1-(3-trifluoromethyl-benzyl)-1H-pyrazole, a group believed to confer potency and selectivity toward the human (h) A\(_{2B}\) adenosine receptor (AR) to the xanthine ligand 8-(1-(3-(trifluoromethyl) benzyl)-1H-pyrazol-4-yl)-1,3-dimethyl-1H-purine-2,6(3H, 7H)-dione (CVT 6975). Interestingly, the synthesized compounds turned out to be inactive at the hA\(_{2B}\) AR but they displayed affinity at the hA\(_3\) AR in the nanomolar range. The best compound of the series (6) shows both high affinity (hA\(_3\) AR K\(_i\) = 11 nM) and selectivity (A\(_1\)/A\(_3\) and A\(_{2A}\)/A\(_3\) > 9090; A\(_{2B}\)/A\(_3\) > 909) at the hA\(_3\) AR. To better rationalize these results, a molecular docking study on the four AR subtypes was performed for all the synthesized compounds. In addition, CTV 6975 and two close analogues have been subjected to the same molecular docking protocol to investigate the role of the 1-(3-trifluoromethyl-benzyl)-1H-pyrazole on the binding at the four ARs. KW - drug KW - human A(3) KW - protein-coupled receptors KW - classification KW - subtypes KW - potent KW - antagonists KW - mast cells KW - targets KW - A(2B) receptors KW - international union Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-137133 VL - 10 IS - 12 ER - TY - JOUR A1 - Zadeh-Khorasani, Maryam A1 - Nolte, Thomas A1 - Mueller, Thomas D. A1 - Pechlivanis, Markos A1 - Rueff, Franziska A1 - Wollenberg, Andreas A1 - Fricker, Gert A1 - Wolf, Eckhard A1 - Siebeck, Matthias A1 - Gropp, Roswitha T1 - NOD-scid IL2R \(\gamma^{null}\) mice engrafted with human peripheral blood mononuclear cells as a model to test therapeutics targeting human signaling pathways JF - Journal of Translational Medicine N2 - Background: Animal models of human inflammatory diseases have limited predictive quality for human clinical trials for various reasons including species specific activation mechanisms and the immunological background of the animals which markedly differs from the genetically heterogeneous and often aged patient population. Objective: Development of an animal model allowing for testing therapeutics targeting pathways involved in the development of Atopic Dermatitis (AD) with better translatability to the patient. Methods: NOD-scid IL2R \(\gamma^{null}\) mice engrafted with human peripheral blood mononuclear cells (hPBMC) derived from patients suffering from AD and healthy volunteers were treated with IL-4 and the antagonistic IL-4 variant R121/Y124D (Pitrakinra). Levels of human (h) IgE, amount of B-, T- and plasma-cells and ratio of CD4 : CD8 positive cells served as read out for induction and inhibition of cell proliferation and hIgE secretion. Results were compared to in vitro analysis. Results: hIgE secretion was induced by IL-4 and inhibited by the IL-4 antagonist Pitrakinra in vivo when formulated with methylcellulose. B-cells proliferated in response to IL-4 in vivo; the effect was abrogated by Pitrakinra. IL-4 shifted CD4 : CD8 ratios in vitro and in vivo when hPBMC derived from healthy volunteers were used. Pitrakinra reversed the effect. Human PBMC derived from patients with AD remained inert and engrafted mice reflected the individual responses observed in vitro. Conclusion: NOD-scid IL2R \(\gamma^{null}\) mice engrafted with human PBMC reflect the immunological history of the donors and provide a complementary tool to in vitro studies. Thus, studies in this model might provide data with better translatability from bench to bedside. KW - atopic dermatitis KW - T-cells KW - rheumatoid arthritis KW - human interleukin-4 KW - TGN1412 KW - oxazolone colitis KW - cytokine release KW - expression KW - antagonists KW - responses Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-122960 SN - 1479-5876 VL - 11 IS - 4 ER - TY - JOUR A1 - Nolte, Thomas A1 - Zadeh-Khorasani, Maryam A1 - Safarov, Orkhan A1 - Rueff, Franziska A1 - Varga, Rita A1 - Herbach, Nadja A1 - Wanke, Rüdiger A1 - Wollenberg, Andreas A1 - Mueller, Thomas A1 - Gropp, Roswitha A1 - Wolf, Eckhard A1 - Siebeck, Matthias T1 - Induction of oxazolone-mediated features of atopic dermatitis in NOD-scid IL2R \(γ^{null}\) mice engrafted with human peripheral blood mononuclear cells JF - Disease Models & Mechanisms N2 - Animal models mimicking human diseases have been used extensively to study the pathogenesis of autoimmune diseases and the efficacy of potential therapeutics. They are, however, limited with regard to their similarity to the human disease and cannot be used if the antagonist and its cognate receptor require high similarity in structure or binding. Here, we examine the induction of oxazolone-mediated features of atopic dermatitis (AD) in NOD-scid IL2R \(γ^{null}\) mice engrafted with human peripheral blood mononuclear cells (PBMC). The mice developed the same symptoms as immunocompetent BALB/c mice. Histological alterations induced by oxazolone were characterized by keratosis, epithelial hyperplasia and influx of inflammatory cells into the dermis and epidermis. The cellular infiltrate was identified as human leukocytes, with T cells being the major constituent. In addition, oxazolone increased human serum IgE levels. The response, however, required the engraftment of PBMC derived from patients suffering from AD, which suggests that this model reflects the immunological status of the donor. Taken together, the model described here has the potential to evaluate the efficacy of therapeutics targeting human lymphocytes in vivo and, in addition, might be developed further to elucidate molecular mechanisms inducing and sustaining flares of the disease. KW - expression KW - model KW - pbl KW - differentiation KW - mechanisms KW - antagonists KW - gamma KW - human interleukin-4 KW - rheumatoid-arthritis KW - T-cells Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-122189 VL - 6 ER -