TY - JOUR A1 - Aso, Yoshinori A1 - Herb, Andrea A1 - Ogueta, Maite A1 - Siwanowicz, Igor A1 - Templier, Thomas A1 - Friedrich, Anja B. A1 - Ito, Kei A1 - Scholz, Henrike A1 - Tanimoto, Hiromu T1 - Three Dopamine Pathways Induce Aversive Odor Memories with Different Stability JF - PLoS Genetics N2 - Animals acquire predictive values of sensory stimuli through reinforcement. In the brain of Drosophila melanogaster, activation of two types of dopamine neurons in the PAM and PPL1 clusters has been shown to induce aversive odor memory. Here, we identified the third cell type and characterized aversive memories induced by these dopamine neurons. These three dopamine pathways all project to the mushroom body but terminate in the spatially segregated subdomains. To understand the functional difference of these dopamine pathways in electric shock reinforcement, we blocked each one of them during memory acquisition. We found that all three pathways partially contribute to electric shock memory. Notably, the memories mediated by these neurons differed in temporal stability. Furthermore, combinatorial activation of two of these pathways revealed significant interaction of individual memory components rather than their simple summation. These results cast light on a cellular mechanism by which a noxious event induces different dopamine signals to a single brain structure to synthesize an aversive memory. KW - dynamics KW - serotonin KW - expression KW - melanogaster KW - neurons form KW - olfactory memory KW - long-term-memory KW - drosophila mushroom body KW - sensitization KW - localization Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130631 VL - 8 IS - 7 ER - TY - JOUR A1 - El-Keredy, Amira A1 - Schleyer, Michael A1 - König, Christian A1 - Ekim, Aslihan A1 - Gerber, Bertram T1 - Behavioural Analyses of Quinine Processing in Choice, Feeding and Learning of Larval Drosophila JF - PLoS One N2 - Gustatory stimuli can support both immediate reflexive behaviour, such as choice and feeding, and can drive internal reinforcement in associative learning. For larval Drosophila, we here provide a first systematic behavioural analysis of these functions with respect to quinine as a study case of a substance which humans report as "tasting bitter". We describe the dose-effect functions for these different kinds of behaviour and find that a half-maximal effect of quinine to suppress feeding needs substantially higher quinine concentrations (2.0 mM) than is the case for internal reinforcement (0.6 mM). Interestingly, in previous studies (Niewalda et al. 2008, Schipanski et al 2008) we had found the reverse for sodium chloride and fructose/sucrose, such that dose-effect functions for those tastants were shifted towards lower concentrations for feeding as compared to reinforcement, arguing that the differences in dose-effect function between these behaviours do not reflect artefacts of the types of assay used. The current results regarding quinine thus provide a starting point to investigate how the gustatory system is organized on the cellular and/or molecular level to result in different behavioural tuning curves towards a bitter tastant. KW - honeybees KW - chemosensory system KW - bitter taste KW - melanogaster KW - receptor KW - reward KW - brain KW - organization KW - architecture KW - perception Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130811 VL - 7 IS - 7 ER -