TY - JOUR A1 - Hertlein, Tobias A1 - Sturm, Volker A1 - Jakob, Peter A1 - Ohlsen, Knut T1 - \(^{19}\)F Magnetic Resonance Imaging of Perfluorocarbons for the Evaluation of Response to Antibiotic Therapy in a Staphylococcus aureus Infection Model JF - PLoS ONE N2 - Background The emergence of antibiotic resistant bacteria in recent decades has highlighted the importance of developing new drugs to treat infections. However, in addition to the design of new drugs, the development of accurate preclinical testing methods is essential. In vivo imaging technologies such as bioluminescence imaging (BLI) or magnetic resonance imaging (MRI) are promising approaches. In a previous study, we showed the effectiveness of \(^{19}\)F MRI using perfluorocarbon (PFC) emulsions for detecting the site of Staphylococcus aureus infection. In the present follow-up study, we investigated the use of this method for in vivo visualization of the effects of antibiotic therapy. Methods/Principal findings Mice were infected with S. aureus Xen29 and treated with 0.9% NaCl solution, vancomycin or linezolid. Mock treatment led to the highest bioluminescence values during infection followed by vancomycin treatment. Counting the number of colony-forming units (cfu) at 7 days post-infection (p.i.) showed the highest bacterial burden for the mock group and the lowest for the linezolid group. Administration of PFCs at day 2 p.i. led to the accumulation of \(^{19}\)F at the rim of the abscess in all mice (in the shape of a hollow sphere), and antibiotic treatment decreased the \(^{19}\)F signal intensity and volume. Linezolid showed the strongest effect. The BLI, cfu, and MRI results were comparable. Conclusions \(^{19}\)F-MRI with PFCs is an effective non-invasive method for assessing the effects of antibiotic therapy in vivo. This method does not depend on pathogen specific markers and can therefore be used to estimate the efficacy of antibacterial therapy against a broad range of clinically relevant pathogens, and to localize sites of infection. KW - staphylococcus aureus KW - abscesses KW - vancomycin KW - antibiotics KW - magnetic resonance imaging KW - emulsions KW - bioluminescence imaging KW - in vivo imaging Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130113 VL - 8 IS - 5 ER - TY - JOUR A1 - Weise, Gesa A1 - Basse-Lüsebrink, Thomas C. A1 - Kleinschnitz, Christoph A1 - Kampf, Thomas A1 - Jakob, Peter M. A1 - Stoll, Guido T1 - In Vivo Imaging of Stepwise Vessel Occlusion in Cerebral Photothrombosis of Mice by \(^{19}\)F MRI JF - PLoS One N2 - Background \(^{19}\)F magnetic resonance imaging (MRI) was recently introduced as a promising technique for in vivo cell tracking. In the present study we compared \(^{19}\)F MRI with iron-enhanced MRI in mice with photothrombosis (PT) at 7 Tesla. PT represents a model of focal cerebral ischemia exhibiting acute vessel occlusion and delayed neuroinflammation. Methods/Principal Findings Perfluorocarbons (PFC) or superparamagnetic iron oxide particles (SPIO) were injected intravenously at different time points after photothrombotic infarction. While administration of PFC directly after PT induction led to a strong \(^{19}\)F signal throughout the entire lesion, two hours delayed application resulted in a rim-like \(^{19}\)F signal at the outer edge of the lesion. These findings closely resembled the distribution of signal loss on T2-weighted MRI seen after SPIO injection reflecting intravascular accumulation of iron particles trapped in vessel thrombi as confirmed histologically. By sequential administration of two chemically shifted PFC compounds 0 and 2 hours after illumination the different spatial distribution of the \(^{19}\)F markers (infarct core/rim) could be visualized in the same animal. When PFC were applied at day 6 the fluorine marker was only detected after long acquisition times ex vivo. SPIO-enhanced MRI showed slight signal loss in vivo which was much more prominent ex vivo indicative for neuroinflammation at this late lesion stage. Conclusion Our study shows that vessel occlusion can be followed in vivo by \(^{19}\)F and SPIO-enhanced high-field MRI while in vivo imaging of neuroinflammation remains challenging. The timing of contrast agent application was the major determinant of the underlying processes depicted by both imaging techniques. Importantly, sequential application of different PFC compounds allowed depiction of ongoing vessel occlusion from the core to the margin of the ischemic lesions in a single MRI measurement. KW - in vivo imaging KW - magnetic resonance imaging KW - macrophages KW - emulsions KW - infarction KW - fluorine KW - prefrontal cortex KW - developmental signaling Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-137792 VL - 6 IS - 12 ER -