TY - JOUR A1 - Capetian, Philipp A1 - Roessner, Veit A1 - Korte, Caroline A1 - Walitza, Susanne A1 - Riederer, Franz A1 - Taurines, Regina A1 - Gerlach, Manfred A1 - Moser, Andreas T1 - Altered urinary tetrahydroisoquinoline derivatives in patients with Tourette syndrome: reflection of dopaminergic hyperactivity? JF - Journal of Neural Transmission N2 - Tetrahydroisoquinolines (TIQs) such as salsolinol (SAL), norsalsolinol (NSAL) and their methylated derivatives N-methyl-norsalsolinol (NMNSAL) and N-methyl-salsolinol (NMSAL), modulate dopaminergic neurotransmission and metabolism in the central nervous system. Dopaminergic neurotransmission is thought to play an important role in the pathophysiology of chronic tic disorders, such as Tourette syndrome (TS). Therefore, the urinary concentrations of these TIQ derivatives were measured in patients with TS and patients with comorbid attention-deficit/hyperactivity disorder (TS + ADHD) compared with controls. Seventeen patients with TS, 12 with TS and ADHD, and 19 age-matched healthy controls with no medication took part in this study. Free levels of NSAL, NMNSAL, SAL, and NMSAL in urine were measured by a two-phase chromatographic approach. Furthermore, individual TIQ concentrations in TS patients were used in receiver-operating characteristics (ROC) curve analysis to examine the diagnostic value. NSAL concentrations were elevated significantly in TS [434.67 ± 55.4 nmol/l (standard error of mean = S.E.M.), two-way ANOVA, p < 0.0001] and TS + ADHD patients [605.18 ± 170.21 nmol/l (S.E.M.), two-way ANOVA, p < 0.0001] compared with controls [107.02 ± 33.18 nmol/l (S.E.M.), two-way ANOVA, p < 0.0001] and NSAL levels in TS + ADHD patients were elevated significantly in comparison with TS patients (two-way ANOVA, p = 0.017). NSAL demonstrated an AUC of 0.93 ± 0.046 (S.E.M) the highest diagnostic value of all metabolites for the diagnosis of TS. Our results suggest a dopaminergic hyperactivity underlying the pathophysiology of TS and ADHD. In addition, NSAL concentrations in urine may be a potential diagnostic biomarker of TS. KW - Tourette syndrome KW - ADHD KW - tics KW - biomarkers KW - tetrahydroisoquinoline derivates Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-235771 SN - 0300-9564 VL - 128 ER - TY - JOUR A1 - Fernàndez-Castillo, Noèlia A1 - Cabana-Domínguez, Judit A1 - Kappel, Djenifer B. A1 - Torrico, Bàrbara A1 - Weber, Heike A1 - Lesch, Klaus-Peter A1 - Lao, Oscar A1 - Reif, Andreas A1 - Cormand, Bru T1 - Exploring the contribution to ADHD of genes involved in Mendelian disorders presenting with hyperactivity and/or inattention JF - Genes N2 - Attention-deficit hyperactivity disorder (ADHD) is a complex neurodevelopmental disorder characterized by hyperactivity, impulsivity, and/or inattention, which are symptoms also observed in many rare genetic disorders. We searched for genes involved in Mendelian disorders presenting with ADHD symptoms in the Online Mendelian Inheritance in Man (OMIM) database, to curate a list of new candidate risk genes for ADHD. We explored the enrichment of functions and pathways in this gene list, and tested whether rare or common variants in these genes are associated with ADHD or with its comorbidities. We identified 139 genes, causal for 137 rare disorders, mainly related to neurodevelopmental and brain function. Most of these Mendelian disorders also present with other psychiatric traits that are often comorbid with ADHD. Using whole exome sequencing (WES) data from 668 ADHD cases, we found rare variants associated with the dimension of the severity of inattention symptoms in three genes: KIF11, WAC, and CRBN. Then, we focused on common variants and identified six genes associated with ADHD (in 19,099 cases and 34,194 controls): MANBA, UQCC2, HIVEP2, FOPX1, KANSL1, and AUH. Furthermore, HIVEP2, FOXP1, and KANSL1 were nominally associated with autism spectrum disorder (ASD) (18,382 cases and 27,969 controls), as well as HIVEP2 with anxiety (7016 cases and 14,475 controls), and FOXP1 with aggression (18,988 individuals), which is in line with the symptomatology of the rare disorders they are responsible for. In conclusion, inspecting Mendelian disorders and the genes responsible for them constitutes a valuable approach for identifying new risk genes and the mechanisms of complex disorders. KW - ADHD KW - rare mendelian disorders KW - genetic variants Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-252346 SN - 2073-4425 VL - 13 IS - 1 ER - TY - THES A1 - Mortimer, Niall Patrick T1 - ADHD Genetics in Mouse and Man T1 - ADHS Genetik bei Maus und Mensch T1 - Genética del TDAH en ratón y hombre N2 - Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder with an estimated heritability of around 70%. In order to fully understand ADHD biology it is necessary to incorporate multiple different types of research. In this thesis, both human and animal model research is described as both lines of research are required to elucidate the aetiology of ADHD and development new treatments. The role of a single gene, Adhesion G protein-coupled receptor L3 (ADGRL3) was investigated using a knockout mouse model. ADGRL3 has putative roles in neuronal migration and synapse function. Various polymorphisms in ADGRL3 have been linked with an increased risk of attention deficit/hyperactivity disorder (ADHD) in human studies. Adgrl3-deficient mice were examined across multiple behavioural domains related to ADHD: locomotive activity, visuospatial and recognition memory, gait impulsivity, aggression, sociability and anxiety-like behaviour. The transcriptomic alterations caused by Adgrl3-depletion were analysed by RNA-sequencing of three ADHD-relevant brain regions: prefrontal cortex (PFC), hippocampus and striatum. Increased locomotive activity in Adgrl3-/- mice was observed across all tests with the specific gait analysis revealing subtle gait abnormalities. Spatial memory and learning domains were also impaired in these mice. Increased levels of impulsivity and sociability accompanying decreased aggression were also detected. None of these alterations were observed in Adgrl3+/- mice. The numbers of genes found to exhibit differential expression was relatively small in all brain regions sequenced. The absence of large scale gene expression dysregulation indicates a specific pathway of action, rather than a broad neurobiological perturbation. The PFC had the greatest number of differentially expressed genes and gene-set analysis of differential expression in this brain region detected a number of ADHD-relevant pathways including dopaminergic synapses as well as cocaine and amphetamine addiction. The most dysregulated gene in the PFC was Slc6a3 which codes for the dopamine transporter, a molecule vital to current pharmacological treatment of ADHD. The behavioural and transcriptomic results described in this thesis further validate Adgrl3 constitutive knockout mice as an experimental model of ADHD and provide neuroanatomical targets for future studies involving ADGRL3 modified animal models. The study of ADHD risk genes such as ADGRL3 requires the gene to be first identified using human studies. These studies may be genome based such as genome wide association studies (GWAS) or transcriptome based using microarray or RNA sequencing technology. To explore ADHD biology in humans the research described in this thesis includes both GWAS and trancriptomic data. A two-step transcriptome profiling was performed in peripheral blood mononuclear cells (PBMCs) of 143 ADHD subjects and 169 healthy controls. We combined GWAS and expression data in an expression-based Polygenic Risk Score (PRS) analysis in a total sample of 879 ADHD cases and 1919 controls from three different datasets. Through this exploratory study we found eight differentially expressed genes in ADHD and no support for the genetic background of the disorder playing a role in the aberrant expression levels identified. These results highlight promising candidate genes and gene pathways for ADHD and support the use of peripheral tissues to assess gene expression signatures for ADHD. This thesis illustrates how both human and animal model research is required to increase our understanding of ADHD. The animal models provide biological insight into the targets identified in human studies and may themselves provide further relevant gene targets. Only by combining research from disparate sources can we develop the thorough understanding on ADHD biology required for treatment development, which is the ultimate goal of translational science research. N2 - Die Aufmerksamkeitsdefizit- / Hyperaktivitätsstörung (ADHS) ist eine neurologische Entwicklungsstörung mit einer geschätzten Erblichkeit von etwa 70%. Um die ADHS-Biologie vollständig verstehen zu können, müssen verschiedene Forschungsansätze verfolgt werden. In dieser Dissertation werden sowohl Forschungsansätze am Menschen als auch im Tiermodell beschrieben, da beide Forschungsansätze erforderlich sind, um die Ätiologie von ADHS aufzuklären und neue Therapien zu entwickeln. Die Rolle eines einzelnen Gens, des Adhesion G-Protein-gekoppelten Rezeptors L3 (ADGRL3), wurde unter Verwendung eines Knockout-Mausmodells untersucht. ADGRL3 spielt eine mutmaßliche Rolle bei der neuronalen Migration und der Synapsenfunktion. Verschiedene Polymorphismen in ADGRL3 wurden in Studien an Menschen mit einem erhöhten Risiko für Aufmerksamkeitsdefizit- / Hyperaktivitätsstörung (ADHS) in Verbindung gebracht. Adgrl3-defiziente Mäuse wurden in mehreren Verhaltensbereichen im Zusammenhang mit ADHS untersucht: Bewegungsaktivität, visuelles und Erkennungsgedächtnis, Gangimpulsivität, Aggression, Umgänglichkeit und angstartiges Verhalten. Die durch Adgrl3-Depletion verursachten transkriptomischen Veränderungen wurden durch RNA-Sequenzierung von drei ADHS-relevanten Hirnregionen analysiert: präfrontaler Cortex (PFC), Hippocampus und Striatum. Bei allen Tests wurde eine erhöhte Aktivität der Lokomotive bei Adgrl3 - / - Mäusen beobachtet, wobei die spezifische Ganganalyse subtile Gangstörungen aufdeckte. Das räumliche Gedächtnis und die Lerndomänen waren bei diesen Mäusen ebenfalls beeinträchtigt. Es wurde auch ein erhöhtes Maß an Impulsivität und Umgänglichkeit festgestellt, begleitet von verminderter Aggression. Keine dieser Veränderungen wurde bei Adgrl3 +/- Mäusen beobachtet. Die Anzahl der Gene, bei denen eine unterschiedliche Expression festgestellt wurde, war in allen sequenzierten Hirnregionen relativ gering. Das Fehlen einer Dysregulation der Genexpression in großem Maßstab weist eher auf einen spezifischen Wirkmechanismus als auf eine breite neurobiologische Störung hin. Die PFC hatte die größte Anzahl differentiell exprimierter Gene, und eine Gen-Set-Analyse der differentiellen Expression in dieser Hirnregion ergab eine Reihe von ADHS-relevanten Signalwegen, einschließlich dopaminerger Synapsen sowie Kokain- und Amphetaminsucht. Das am stärksten dysregulierte Gen in der PFC war Slc6a3, das für den Dopamintransporter kodiert.Dieses Gen ist bei der derzeitigen pharmakologischen Behandlung von ADHS von entscheidender Bedeutung. Die in dieser Arbeit beschriebenen Verhaltens- und Transkriptomergebnisse bestätigen die konstitutiven Adgrl3-Knockout-Mäuse als experimentelles Modell für ADHS und liefern neuroanatomische Zielstrukturen für zukünftige Studien mit ADGRL3-modifizierten Tiermodellen. Die Untersuchung von ADHS-Risikogenen wie ADGRL3 erfordert zunächst, dass das Gen in Studien im Menschen identifiziert wird. Diese Studien können genombasiert sein, z.B. wie genomweite Assoziationsstudie (GWAS), oder transkriptombasiert unter Verwendung von Microarray- oder RNA-Sequenzierungstechnologie. Um die ADHS-Biologie beim Menschen zu erforschen, umfassen die in dieser Arbeit beschriebenen Forschungsansätze sowohl GWAS- als auch trankriptomische Daten. Ein zweistufiges Transkriptom-Profiling wurde in mononukleären Zellen des peripheren Blutes (PBMCs) von 143 ADHS-Patienten und 169 gesunden Kontrollpersonen durchgeführt. Wir kombinierten GWAS- und Expressionsdaten in einer Expressions-basierten PRS-Analyse (Polygenic Risk Score) in einer Gesamtstichprobe von 879 ADHS-Fällen und 1919 Kontrollen aus drei verschiedenen Datensätzen. Durch diese Untersuchungen fanden wir acht differentiell exprimierte Gene bei ADHS und keinen Hinweis darauf, dass der genetische Hintergrund der Störung eine Rolle bei den identifizierten aberranten Expressionsniveaus spielt. Diese Ergebnisse weisen auf vielversprechende Kandidatengene und Genwege für ADHS hin und unterstützen die Verwendung peripherer Gewebe zur Beurteilung der Genexpressionssignaturen für ADHS. Diese Arbeit zeigt, dass sowohl Forschungsansätze am Menschen als auch Tiermodelle erforderlich sind, um unser Verständnis von ADHS zu verbessern. Die Tiermodelle bieten biologische Einblicke in die in Studien an Menschen identifizierten Ziele und können selbst weitere relevante Genziele liefern. Nur durch die Kombination von Forschungsansätzen aus unterschiedlichen Quellen können wir ein tiefes Verständnis der ADHS-Biologie entwickeln, das für die Entwicklung von Behandlungsstrategien erforderlich ist. Dies ist das ultimative Ziel der translationalen wissenschaftlichen Forschung. N2 - El trastorno por déficit de atención con hiperactividad (TDAH) es un trastorno del desarrollo neural con una heredabilidad estimada de alrededor de un 70%. Para poder comprender plenamente la biología del TDAH, es necesario incorporar diversos tipos de investigación. En esta tesis, se describe la investigación en modelos tanto humanos como animales, ya que se requieren ambas líneas de investigación para aclarar la etiología del TDAH y poder desarrollar nuevos tratamientos. El papel de un solo gen, el receptor L3 acoplado a la proteína de adhesión G (ADGRL3) se ha investigado utilizando un modelo de ratón knock-out. El ADGRL3 tiene efectos putativos en la migración neuronal y en la función de la sinapsis. Varios polimorfismos en ADGRL3 se han relacionado con un mayor riesgo de trastorno por déficit de atención/ hiperactividad (TDAH) en estudios en humanos. Adicionalmente se han examinado ratones deficientes en ADGRL3 en varios ámbitos conductuales relacionados con el TDAH tales como la actividad locomotriz, la memoria visoespacial y de reconocimiento, la impulsividad de la marcha, la agresividad, la sociabilidad y los comportamientos similares a la ansiedad. Las modificaciones trabscriptómicas causadas por el agotamiento de ADGRL3 se han analizado por secuenciación del ARN de tres regiones del cerebro relevantes al TDAH: la corteza prefrontal (CPF), el hipocampo, y el estriado. Se ha observado una mayor actividad locomotriz en ratones ADGRL3 -/- en todas las pruebas con el análisis específico de la marcha que revela anomalías sutiles de la marcha. La memoria espacial y los dominios de aprendizaje también se han visto afectados en estos mismos ratones. También se detectaron niveles aumentados de impulsividad y sociabilidad que acompañan a la disminución de la agresividad. Ninguno de estos cambios se han observado en ratones ADGRL3 +/-. El número de genes encontrados que exhibieron una expresión diferencial ha sido relativamente bajo en todas las regiones del cerebro secuenciadas. La ausencia de desregulación de expresión génica a gran escala indica una vía de acción específica, en vez de una perturbación neurobiológica amplia. La corteza prefrontal tenía el mayor número de genes expresados diferencialmente y el análisis de conjuntos de genes de expresión diferencial en esta región del cerebro ha mostrado una serie de vías relevantes para el TDAH, incluyendo las sinapsis dopaminérgicas así como la adicción a la cocaína y a las anfetaminas. El gen más desregulado en la corteza prefrontal fue el Slc6a3, que codifica para el transportador de dopamina, una molécula esencial para el tratamiento farmacológico actual del TDAH. Los resultados conductuales y transcriptómicos descritos en esta tesis dan aún más validez a los ratones knock-out constitutivos de Adgrl3 como modelo experimental de TDAH y ofrecen objetivos neuroanatómicos para estudios futuros con modelos animales modificados con ADGRL3. El estudio de genes de riesgo de TDAH como el ADGRL3 requiere que el gen se identifique primero mediante estudios en humanos. Estos estudios pueden basarse en el genoma, como GWAS (estudio extenso de asociación en todo el genoma) o en transcriptoma, usando microarrays o tecnología de secuenciación de ARN. Para explorar la biología del TDAH en humanos, la investigación descrita en esta tesis incluye datos GWAS y trancriptómicos. Se ha realizado un perfil de transcriptoma de dos fases en células mononucleares de sangre periférica (CMSP) de 143 sujetos con TDAH y 169 controles sanos. Hemos combinado GWAS y datos de expresión en un análisis de puntuación de riesgo poligénico con sede en expression genica en una muestra total de 879 casos de TDAH y 1919 controles de tres conjuntos de datos distintos. A través de este estudio exploratorio, hemos encontrado ocho genes expresados diferencialmente en el TDAH y además que no existe indicio de que el fondo genético del trastorno tiene un papel en los niveles de expresión aberrantes identificados. Estos resultados subrayan genes candidatos prometedores y vías genéticas para el TDAH y además apoyan el uso de tejidos periféricos para evaluar las firmas de expresión génica para el TDAH Esta tesis muestra cómo se requiere la investigación en modelos humanos y animales para aumentar nuestra comprensión del TDAH. Los modelos animales proporcionan información biológica sobre los objetivos identificados en estudios en humanos y pueden proporcionar objetivos genéticos relevantes adicionales. Solo mediante la combinación de las investigaciones de fuentes dispares podemos desarrollar la comprensión exhaustiva de la biología del TDAH necesaria para el desarrollo del tratamiento, lo que es el objetivo principal de la investigación científica traslacional. KW - ADGRL3 KW - Neuroscience KW - Genetics KW - ADHD KW - Mouse Model KW - Human Transcriptome Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-236265 ER - TY - JOUR A1 - Ziegler, Georg C. A1 - Ehlis, Ann-Christine A1 - Weber, Heike A1 - Vitale, Maria Rosaria A1 - Zöller, Johanna E. M. A1 - Ku, Hsing-Ping A1 - Schiele, Miriam A. A1 - Kürbitz, Laura I. A1 - Romanos, Marcel A1 - Pauli, Paul A1 - Kalisch, Raffael A1 - Zwanzger, Peter A1 - Domschke, Katharina A1 - Fallgatter, Andreas J. A1 - Reif, Andreas A1 - Lesch, Klaus-Peter T1 - A Common CDH13 Variant is Associated with Low Agreeableness and Neural Responses to Working Memory Tasks in ADHD JF - Genes N2 - The cell—cell signaling gene CDH13 is associated with a wide spectrum of neuropsychiatric disorders, including attention-deficit/hyperactivity disorder (ADHD), autism, and major depression. CDH13 regulates axonal outgrowth and synapse formation, substantiating its relevance for neurodevelopmental processes. Several studies support the influence of CDH13 on personality traits, behavior, and executive functions. However, evidence for functional effects of common gene variation in the CDH13 gene in humans is sparse. Therefore, we tested for association of a functional intronic CDH13 SNP rs2199430 with ADHD in a sample of 998 adult patients and 884 healthy controls. The Big Five personality traits were assessed by the NEO-PI-R questionnaire. Assuming that altered neural correlates of working memory and cognitive response inhibition show genotype-dependent alterations, task performance and electroencephalographic event-related potentials were measured by n-back and continuous performance (Go/NoGo) tasks. The rs2199430 genotype was not associated with adult ADHD on the categorical diagnosis level. However, rs2199430 was significantly associated with agreeableness, with minor G allele homozygotes scoring lower than A allele carriers. Whereas task performance was not affected by genotype, a significant heterosis effect limited to the ADHD group was identified for the n-back task. Heterozygotes (AG) exhibited significantly higher N200 amplitudes during both the 1-back and 2-back condition in the central electrode position Cz. Consequently, the common genetic variation of CDH13 is associated with personality traits and impacts neural processing during working memory tasks. Thus, CDH13 might contribute to symptomatic core dysfunctions of social and cognitive impairment in ADHD. KW - ADHD KW - CDH13 KW - neurodevelopment KW - executive functions KW - working memory KW - Big Five KW - agreeableness Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-245220 SN - 2073-4425 VL - 12 IS - 9 ER -