TY - JOUR A1 - Kress, Michaela A1 - Hüttenhofer, Alexander A1 - Landry, Marc A1 - Kuner, Rohini A1 - Favereaux, Alexandre A1 - Greenberg, David A1 - Bednarik, Josef A1 - Heppenstall, Paul A1 - Kronenberg, Florian A1 - Malcangio, Marzia A1 - Rittner, Heike A1 - Üçeyler, Nurcan A1 - Trajanoski, Zlatko A1 - Mouritzen, Peter A1 - Birklein, Frank A1 - Sommer, Claudia A1 - Soreq, Hermona T1 - microRNAs in nociceptive circuits as predictors of future clinical applications JF - Frontiers in Molecular Neuroscience N2 - Neuro-immune alterations in the peripheral and central nervous system play a role in the pathophysiology of chronic pain, and non-coding RNAs – and microRNAs (miRNAs) in particular – regulate both immune and neuronal processes. Specifically, miRNAs control macromolecular complexes in neurons, glia and immune cells and regulate signals used for neuro-immune communication in the pain pathway. Therefore, miRNAs may be hypothesized as critically important master switches modulating chronic pain. In particular, understanding the concerted function of miRNA in the regulation of nociception and endogenous analgesia and defining the importance of miRNAs in the circuitries and cognitive, emotional and behavioral components involved in pain is expected to shed new light on the enigmatic pathophysiology of neuropathic pain, migraine and complex regional pain syndrome. Specific miRNAs may evolve as new druggable molecular targets for pain prevention and relief. Furthermore, predisposing miRNA expression patterns and inter-individual variations and polymorphisms in miRNAs and/or their binding sites may serve as biomarkers for pain and help to predict individual risks for certain types of pain and responsiveness to analgesic drugs. miRNA-based diagnostics are expected to develop into hands-on tools that allow better patient stratification, improved mechanism-based treatment, and targeted prevention strategies for high risk individuals. KW - chronic pain KW - biomarker KW - polymorphism KW - miRNA-based diagnostics KW - miRNA expression patterns KW - miRNA polymorphisms KW - antagomir KW - miRNA-based analgesic Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-154597 VL - 6 IS - 33 ER - TY - JOUR A1 - Golombeck, Stefanie Kristin A1 - Wessig, Carsten A1 - Monoranu, Camelia-Maria A1 - Schütz, Ansgar A1 - Solymosi, Laszlo A1 - Melzer, Nico A1 - Kleinschnitz, Christoph T1 - Fatal atypical reversible posterior leukoencephalopathy syndrome: a case report JF - Journal of Medical Case Reports N2 - Introduction: Reversible posterior leukoencephalopathy syndrome – a reversible subacute global encephalopathy clinically presenting with headache, altered mental status, visual symptoms such as hemianopsia or cortical blindness, motor symptoms, and focal or generalized seizures – is characterized by a subcortical vasogenic edema symmetrically affecting posterior brain regions. Complete reversibility of both clinical signs and magnetic resonance imaging lesions is regarded as a defining feature of reversible posterior leukoencephalopathy syndrome. Reversible posterior leukoencephalopathy syndrome is almost exclusively seen in the setting of a predisposing clinical condition, such as pre-eclampsia, systemic infections, sepsis and shock, certain autoimmune diseases, various malignancies and cytotoxic chemotherapy, transplantation and concomitant immunosuppression (especially with calcineurin inhibitors) as well as episodes of abrupt hypertension. We describe for the first time clinical, radiological and histological findings in a case of reversible posterior leukoencephalopathy syndrome with an irreversible and fatal outcome occurring in the absence of any of the known predisposing clinical conditions except for a hypertensive episode. Case presentation: A 58-year-old Caucasian woman presented with a two-week history of subacute and progressive occipital headache, blurred vision and imbalance of gait and with no evidence for raised arterial blood pressure during the two weeks previous to admission. Her past medical history was unremarkable except for controlled arterial hypertension. Cerebral magnetic resonance imaging demonstrated cortical and subcortical lesions with combined vasogenic and cytotoxic edema atypical for both venous congestion and arterial infarction. Routine laboratory and cerebrospinal fluid parameters were normal. The diagnosis of reversible posterior leukoencephalopathy syndrome was established. Within hours after admission the patient showed a rapidly decreasing level of consciousness, extension and flexion synergisms, bilaterally extensor plantar responses and rapid cardiopulmonary decompensation requiring ventilatory and cardiocirculatory support. Follow-up cerebral imaging demonstrated widespread and confluent cytotoxic edematous lesions in different arterial territories, global cerebral swelling, and subsequent upper and lower brainstem herniation. Four days after admission, the patient was declared dead because of brain death. Conclusion: This case demonstrates that fulminant and fatal reversible posterior leukoencephalopathy syndrome may occur spontaneously, that is, in the absence of any of the known predisposing systemic conditions. KW - reversible posterior leukoencephalopathy syndrome KW - generalized cerebral edema KW - cerebral autoregulation KW - blood pressure Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-135517 VL - 7 IS - 14 ER - TY - JOUR A1 - Ehling, Petra A1 - Göb, Eva A1 - Bittner, Stefan A1 - Budde, Thomas A1 - Ludwig, Andreas A1 - Kleinschnitz, Christoph A1 - Meuth, Sven G. T1 - Ischemia-induced cell depolarization: does the hyperpolarization-activated cation channel HCN2 affect the outcome after stroke in mice? JF - Experimental & Translational Stroke Medicine N2 - Background Brain ischemia is known to include neuronal cell death and persisting neurological deficits. A lack of oxygen and glucose are considered to be key mediators of ischemic neurodegeneration while the exact mechanisms are yet unclear. In former studies the expression of two different two-pore domain potassium \((K_{2P})\) channels (TASK1, TREK1) were shown to ameliorate neuronal damage due to cerebral ischemia. In neurons, TASK channels carrying hyperpolarizing \(K^+\) leak currents, and the pacemaker channel HCN2, carrying depolarizing \(I_h\), stabilize the membrane potential by a mutual functional interaction. It is assumed that this ionic interplay between TASK and HCN2 channels enhances the resistance of neurons to insults accompanied by extracellular pH shifts. Methods In C57Bl/6 (wildtype, WT), \(hcn2^{+/+}\) and \(hcn2^{-/-}\) mice we used an in vivo model of cerebral ischemia (transient middle cerebral artery occlusion (tMCAO)) to depict a functional impact of HCN2 in stroke formation. Subsequent analyses comprise behavioural tests and hcn2 gene expression assays. Results After 60 min of tMCAO induction in WT mice, we collected tissue samples at 6, 12, and 24 h after reperfusion. In the infarcted neocortex, hcn2 expression analyses revealed a nominal peak of hcn2 expression 6 h after reperfusion with a tendency towards lower expression levels with longer reperfusion times. Hcn2 gene expression levels in infarcted basal ganglia did not change after 6 h and 12 h. Only at 24 h after reperfusion, hcn2 expression significantly decreases by ~55%. However, 30 min of tMCAO in hcn2-/- as well as hcn2+/+ littermates induced similar infarct volumes. Behavioural tests for global neurological function (Bederson score) and motor function/coordination (grip test) were performed at day 1 after surgery. Again, we found no differences between the groups. Conclusions Here, we hypothesized that the absence of HCN2, an important functional counter player of TASK channels, affects neuronal survival during stroke-induced tissue damage. However, together with a former study on TASK3 these results implicate that both TASK3 and HCN2 which were supposed to be neuroprotective due to their pH-dependency, do not influence ischemic neurodegeneration during stroke in the tMCAO model. KW - ischemia Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-131887 VL - 5 IS - 16 ER - TY - JOUR A1 - Linker, Ralf A. A1 - Magnus, Tim A1 - Korn, Thomas A1 - Kleinschnitz, Christoph A1 - Meuth, Sven G. T1 - Report on the 5‘th scientific meeting of the “Verein zur Förderung des Wissenschaftlichen Nachwuchses in der Neurologie” (NEUROWIND e.V.) held in Motzen, Germany, Oct. 25th – Oct. 27th, 2013 JF - Experimental & Translational Stroke Medicine N2 - From october 25th - 27th 2013, the 5th NEUROWIND e.V. meeting was held in Motzen, Brandenburg, Germany. This year more than 60 doctoral students and postdocs from over 25 different groups working in German university hospitals or research institutes attended the meeting to discuss their latest findings in the fields of neuroimmunology, neurodegeneration and neurovascular research. All participants appreciated the stimulating environment in Motzen, Brandenburg, and people took the opportunity for scientific exchange, discussion about ongoing projects and already started further collaborations. Like in the previous years, the symposium was regarded as a very well organized platform to support research of young investigators in Germany. According to the major aim of NEUROWIND e.V. to support younger researchers in Germany the 3rd NEUROWIND YOUNG SCIENTIST AWARD for experimental neurology was awarded to Ruth Stassart working in the group of Klaus Armin Nave and Wolfgang Brück (MPI Göttingen and Department of Neuropathology, Göttingen Germany). The successful work was published in Nature Neuroscience entitled “A role for Swann cell-derived neuregulin-1 in remyelination”. This outstanding paper deals with the function of Schwann cell neuregulin as an endogenous factor for myelin repair. The award is endowed with 20.000 Euro sponsored by Merck Serono GmbH, Darmstadt, Germany (unrestricted educational grant). This year’s keynote lecture was given by Albert Ludolph, Head of the Department of Neurology at the University Clinic of Ulm. Dr. Ludolph highlighted the particular role of individual scientists for the development of research concepts in Alzheimer´s disease (AD) and frontotemporal dementia (FTD). KW - NEUROWIND Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-129230 VL - 5 IS - 15 ER - TY - JOUR A1 - Volkmann, Jens A1 - Albanese, Alberto A1 - Antonini, Angelo A1 - Chaudhuri, K. Ray A1 - Clarke, Karl E. A1 - de Bie, Rob M. A. A1 - Deuschl, Günther A1 - Eggert, Karla A1 - Houeto, Jean-Luc A1 - Kulisevsky, Jaime A1 - Nyholm, Dag A1 - Odin, Per A1 - Ostergaard, Karen A1 - Poewe, Werner A1 - Pollak, Pierre A1 - Rabey, Jose Martin A1 - Rascol, Olivier A1 - Ruzicka, Evzen A1 - Samuel, Michael A1 - Speelman, Hans A1 - Sydow, Olof A1 - Valldeoriola, Francesc A1 - van der Linden, Chris A1 - Oertel, Wolfgang T1 - Selecting deep brain stimulation or infusion therapies in advanced Parkinson’s disease: an evidence-based review JF - Journal of Neurology N2 - Motor complications in Parkinson’s disease (PD) result from the short half-life and irregular plasma fluctuations of oral levodopa. When strategies of providing more continuous dopaminergic stimulation by adjusting oral medication fail, patients may be candidates for one of three device-aided therapies: deep brain stimulation (DBS), continuous subcutaneous apomorphine infusion, or continuous duodenal/jejunal levodopa/carbidopa pump infusion (DLI). These therapies differ in their invasiveness, side-effect profile, and the need for nursing care. So far, very few comparative studies have evaluated the efficacy of the three device-aided therapies for specific motor problems in advanced PD. As a result, neurologists currently lack guidance as to which therapy could be most appropriate for a particular PD patient. A group of experts knowledgeable in all three therapies reviewed the currently available literature for each treatment and identified variables of clinical relevance for choosing one of the three options such as type of motor problems, age, and cognitive and psychiatric status. For each scenario, pragmatic and (if available) evidence-based recommendations are provided as to which patients could be candidates for either DBS, DLI, or subcutaneous apomorphine. KW - Parkinson’s disease KW - apomorphine KW - deep brain stimulation KW - duodenal levodopa infusion Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-132373 VL - 260 ER - TY - JOUR A1 - Golombeck, Stefanie Kristin A1 - Wessig, Carsten A1 - Monoranu, Camelia-Maria A1 - Schütz, Ansgar A1 - Solymosi, Laszlo A1 - Melzer, Niko A1 - Kleinschnitz, Christoph T1 - Fatal atypical reversible posterior leukoencephalopathy syndrome: a case report JF - Journal of Medical Case Reports N2 - Introduction: Reversible posterior leukoencephalopathy syndrome – a reversible subacute global encephalopathy clinically presenting with headache, altered mental status, visual symptoms such as hemianopsia or cortical blindness, motor symptoms, and focal or generalized seizures – is characterized by a subcortical vasogenic edema symmetrically affecting posterior brain regions. Complete reversibility of both clinical signs and magnetic resonance imaging lesions is regarded as a defining feature of reversible posterior leukoencephalopathy syndrome. Reversible posterior leukoencephalopathy syndrome is almost exclusively seen in the setting of a predisposing clinical condition, such as pre-eclampsia, systemic infections, sepsis and shock, certain autoimmune diseases, various malignancies and cytotoxic chemotherapy, transplantation and concomitant immunosuppression (especially with calcineurin inhibitors) as well as episodes of abrupt hypertension. We describe for the first time clinical, radiological and histological findings in a case of reversible posterior leukoencephalopathy syndrome with an irreversible and fatal outcome occurring in the absence of any of the known predisposing clinical conditions except for a hypertensive episode. Case presentation: A 58-year-old Caucasian woman presented with a two-week history of subacute and progressive occipital headache, blurred vision and imbalance of gait and with no evidence for raised arterial blood pressure during the two weeks previous to admission. Her past medical history was unremarkable except for controlled arterial hypertension. Cerebral magnetic resonance imaging demonstrated cortical and subcortical lesions with combined vasogenic and cytotoxic edema atypical for both venous congestion and arterial infarction. Routine laboratory and cerebrospinal fluid parameters were normal. The diagnosis of reversible posterior leukoencephalopathy syndrome was established. Within hours after admission the patient showed a rapidly decreasing level of consciousness, extension and flexion synergisms, bilaterally extensor plantar responses and rapid cardiopulmonary decompensation requiring ventilatory and cardiocirculatory support. Follow-up cerebral imaging demonstrated widespread and confluent cytotoxic edematous lesions in different arterial territories, global cerebral swelling, and subsequent upper and lower brainstem herniation. Four days after admission, the patient was declared dead because of brain death. Conclusion: This case demonstrates that fulminant and fatal reversible posterior leukoencephalopathy syndrome may occur spontaneously, that is, in the absence of any of the known predisposing systemic conditions. KW - reversible posterior leukoencephalopathy syndrome KW - generalized cerebral edema KW - cerebral autoregulation KW - blood pressure Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-129456 VL - 7 IS - 14 ER - TY - JOUR A1 - Ehling, Petra A1 - Göb, Eva A1 - Bittner, Stefan A1 - Budde, Thomas A1 - Ludwig, Andreas A1 - Kleinschnitz, Christoph A1 - Meuth, Sven G. T1 - Ischemia-induced cell depolarization: does the hyperpolarization-activated cation channel HCN2 affect the outcome after stroke in mice? JF - Experimental & Translational Stroke Medicine N2 - Background Brain ischemia is known to include neuronal cell death and persisting neurological deficits. A lack of oxygen and glucose are considered to be key mediators of ischemic neurodegeneration while the exact mechanisms are yet unclear. In former studies the expression of two different two-pore domain potassium \((K_{2P})\) channels (TASK1, TREK1) were shown to ameliorate neuronal damage due to cerebral ischemia. In neurons, TASK channels carrying hyperpolarizing \(K^+\) leak currents, and the pacemaker channel HCN2, carrying depolarizing Ih, stabilize the membrane potential by a mutual functional interaction. It is assumed that this ionic interplay between TASK and HCN2 channels enhances the resistance of neurons to insults accompanied by extracellular pH shifts. Methods In C57Bl/6 (wildtype, WT), \(hcn2^{+/+}\) and \(hcn2^{-/-}\) mice we used an in vivo model of cerebral ischemia (transient middle cerebral artery occlusion (tMCAO)) to depict a functional impact of HCN2 in stroke formation. Subsequent analyses comprise behavioural tests and hcn2 gene expression assays. Results After 60 min of tMCAO induction in WT mice, we collected tissue samples at 6, 12, and 24 h after reperfusion. In the infarcted neocortex, hcn2 expression analyses revealed a nominal peak of hcn2 expression 6 h after reperfusion with a tendency towards lower expression levels with longer reperfusion times. Hcn2 gene expression levels in infarcted basal ganglia did not change after 6 h and 12 h. Only at 24 h after reperfusion, hcn2 expression significantly decreases by ~55%. However, 30 min of tMCAO in hcn2-/- as well as hcn2+/+ littermates induced similar infarct volumes. Behavioural tests for global neurological function (Bederson score) and motor function/coordination (grip test) were performed at day 1 after surgery. Again, we found no differences between the groups. Conclusions Here, we hypothesized that the absence of HCN2, an important functional counter player of TASK channels, affects neuronal survival during stroke-induced tissue damage. However, together with a former study on TASK3 these results implicate that both TASK3 and HCN2 which were supposed to be neuroprotective due to their pH-dependency, do not influence ischemic neurodegeneration during stroke in the tMCAO model. KW - neurology Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-129240 VL - 5 IS - 16 ER - TY - JOUR A1 - Fluri, Felix A1 - Heinen, Florian A1 - Kleinschnitz, Christoph T1 - Intravenous Thrombolysis in a Stroke Patient Receiving Rivaroxaban JF - Cerebrovascular Disease Extra N2 - No abstract available. KW - anticoagulants KW - intravenous thrombolysis KW - acute ischemic stroke Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-128816 VL - 2013 IS - 3 ER - TY - JOUR A1 - Walter, Maggie C. A1 - Reilich, Peter A1 - Thiele, Simone A1 - Schessl, Joachim A1 - Schreiber, Herbert A1 - Reiners, Karlheinz A1 - Kress, Wolfram A1 - Müller-Reible, Clemens A1 - Vorgerd, Matthias A1 - Urban, Peter A1 - Schrank, Bertold A1 - Deschauer, Marcus A1 - Schlotter-Weigel, Beate A1 - Kohnen, Ralf A1 - Lochmüller, Hans T1 - Treatment of dysferlinopathy with deflazacort: a double-blind, placebo-controlled clinical trial JF - Orphanet Journal of Rare Diseases N2 - Background: Dysferlinopathies are autosomal recessive disorders caused by mutations in the dysferlin (DYSF) gene encoding the dysferlin protein. DYSF mutations lead to a wide range of muscular phenotypes, with the most prominent being Miyoshi myopathy (MM) and limb girdle muscular dystrophy type 2B (LGMD2B). Methods: We assessed the one-year-natural course of dysferlinopathy, and the safety and efficacy of deflazacort treatment in a double-blind, placebo-controlled cross-over trial. After one year of natural course without intervention, 25 patients with genetically defined dysferlinopathy were randomized to receive deflazacort and placebo for six months each (1 mg/kg/day in month one, 1 mg/kg every 2nd day during months two to six) in one of two treatment sequences. Results: During one year of natural course, muscle strength declined about 2% as measured by CIDD (Clinical Investigation of Duchenne Dystrophy) score, and 76 Newton as measured by hand-held dynamometry. Deflazacort did not improve muscle strength. In contrast, there is a trend of worsening muscle strength under deflazacort treatment, which recovers after discontinuation of the study drug. During deflazacort treatment, patients showed a broad spectrum of steroid side effects. Conclusion: Deflazacort is not an effective therapy for dysferlinopathies, and off-label use is not warranted. This is an important finding, since steroid treatment should not be administered in patients with dysferlinopathy, who may be often misdiagnosed as polymyositis. KW - Deflazacort KW - muscle strength KW - gridle muscular-dystrophy KW - Duchenne dystrphy KW - Miyoshi myopathy KW - mutation KW - prednisone KW - gene KW - 2B KW - children KW - design KW - steroids KW - therapy KW - dysferlinopathy KW - Limb girdle muscular dystrophy (LGMD) Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125663 SN - 1750-1172 VL - 8 IS - 26 ER - TY - JOUR A1 - Karle, Kathrin N. A1 - Schüle, Rebecca A1 - Klebe, Stephan A1 - Otto, Susanne A1 - Frischholz, Christian A1 - Liepelt-Scarfone, Inga A1 - Schöls, Ludger T1 - Electrophysiological characterisation of motor and sensory tracts in patients with hereditary spastic paraplegia (HSP) JF - Orphanet Journal of Rare Diseases N2 - Background: Hereditary spastic paraplegias (HSPs) are characterised by lower limb spasticity due to degeneration of the corticospinal tract. We set out for an electrophysiological characterisation of motor and sensory tracts in patients with HSP. Methods: We clinically and electrophysiologically examined a cohort of 128 patients with genetically confirmed or clinically probable HSP. Motor evoked potentials (MEPs) to arms and legs, somato-sensory evoked potentials of median and tibial nerves, and nerve conduction studies of tibial, ulnar, sural, and radial nerves were assessed. Results: Whereas all patients showed clinical signs of spastic paraparesis, MEPs were normal in 27% of patients and revealed a broad spectrum with axonal or demyelinating features in the others. This heterogeneity can at least in part be explained by different underlying genotypes, hinting for distinct pathomechanisms in HSP subtypes. In the largest subgroup, SPG4, an axonal type of damage was evident. Comprehensive electrophysiological testing disclosed a more widespread affection of long fibre tracts involving peripheral nerves and the sensory system in 40%, respectively. Electrophysiological abnormalities correlated with the severity of clinical symptoms. Conclusions: Whereas HSP is primarily considered as an upper motoneuron disorder, our data suggest a more widespread affection of motor and sensory tracts in the central and peripheral nervous system as a common finding in HSP. The distribution patterns of electrophysiological abnormalities were associated with distinct HSP genotypes and could reflect different underlying pathomechanisms. Electrophysiological measures are independent of symptomatic treatment and may therefore serve as a reliable biomarker in upcoming HSP trials. KW - motor evoked potential (MEP) KW - amyotrophic-lateral-sclerosis KW - somatosensory-evoked-potentials KW - Silver-syndrome KW - gene mutations KW - SPG4 KW - mouse model KW - ALSIN gene KW - neuropathy KW - paraparesis KW - protein KW - electrophysiology KW - hereditary spastic paraplegia (HSP) Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-124763 SN - 1750-1172 VL - 8 IS - 158 ER - TY - JOUR A1 - Ablin, Jacob A1 - Fitzcharles, Mary-Ann A1 - Buskila, Dan A1 - Shir, Yoram A1 - Sommer, Claudia A1 - Häuser, Winfried T1 - Treatment of Fibromyalgia Syndrome: Recommendations of Recent Evidence-Based Interdisciplinary Guidelines with Special Emphasis on Complementary and Alternative Therapies JF - Evidence-Bayed Complementary and Alternative Medicine N2 - Objective. Current evidence indicates that there is no single ideal treatment for fibromyalgia syndrome (FMS). First choice treatment options remain debatable, especially concerning the importance of complementary and alternative medicine (CAM) treatments. Methods. Three evidence-based interdisciplinary guidelines on FMS in Canada, Germany, and Israel were compared for their first choice and CAM-recommendations. Results. All three guidelines emphasized a patient-tailored approach according to the key symptoms. Aerobic exercise, cognitive behavioral therapy, and multicomponent therapy were first choice treatments. The guidelines differed in the grade of recommendation for drug treatment. Anticonvulsants (gabapentin, pregabalin) and serotonin noradrenaline reuptake inhibitors (duloxetine, milnacipran) were strongly recommended by the Canadian and the Israeli guidelines. These drugs received only a weak recommendation by the German guideline. In consideration of CAM-treatments, acupuncture, hypnosis/guided imagery, and Tai Chi were recommended by the German and Israeli guidelines. The Canadian guidelines did not recommend any CAM therapy. Discussion. Recent evidence-based interdisciplinary guidelines concur on the importance of treatment tailored to the individual patient and further emphasize the need of self-management strategies (exercise, and psychological techniques). KW - metaanalysis KW - management KW - care Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-122235 SN - 1741-427X ER - TY - JOUR A1 - Kleinschnitz, Christoph A1 - Mencl, Stine A1 - Garz, Cornelia A1 - Niklass, Solveig A1 - Braun, Holger A1 - Göb, Eva A1 - Homola, György A1 - Heinze, Hans-Jochen A1 - Reymann, Klaus G. A1 - Schreiber, Stefanie T1 - Early microvascular dysfunction in cerebral small vessel disease is not detectable on 3.0 Tesla magnetic resonance imaging: a longitudinal study in spontaneously hypertensive stroke-prone rats JF - Experimental & Translational Stroke Medicine N2 - Background Human cerebral small vessel disease (CSVD) has distinct histopathologic and imaging findings in its advanced stages. In spontaneously hypertensive stroke-prone rats (SHRSP), a well-established animal model of CSVD, we recently demonstrated that cerebral microangiopathy is initiated by early microvascular dysfunction leading to the breakdown of the blood–brain barrier and an activated coagulatory state resulting in capillary and arteriolar erythrocyte accumulations (stases). In the present study, we investigated whether initial microvascular dysfunction and other stages of the pathologic CSVD cascade can be detected by serial magnetic resonance imaging (MRI). Findings Fourteen SHRSP and three control (Wistar) rats (aged 26–44 weeks) were investigated biweekly by 3.0 Tesla (3 T) MRI. After perfusion, brains were stained with hematoxylin–eosin and histology was correlated with MRI data. Three SHRSP developed terminal CSVD stages including cortical, hippocampal, and striatal infarcts and macrohemorrhages, which could be detected consistently by MRI. Corresponding histology showed small vessel thromboses and increased numbers of small perivascular bleeds in the infarcted areas. However, 3 T MRI failed to visualize intravascular erythrocyte accumulations, even in those brain regions with the highest densities of affected vessels and the largest vessels affected by stases, as well as failing to detect small perivascular bleeds. Conclusion Serial MRI at a field strength of 3 T failed to detect the initial microvascular dysfunction and subsequent small perivascular bleeds in SHRSP; only terminal stages of cerebral microangiopathy were reliably detected. Further investigations at higher magnetic field strengths (7 T) using blood- and flow-sensitive sequences are currently underway. KW - Cerebral small vessel disease KW - SHRSP KW - MRI Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-97056 UR - http://www.etsmjournal.com/content/5/1/8 ER - TY - JOUR A1 - Üçeyler, Nurcan A1 - Kahn, Ann-Kathrin A1 - Kramer, Daniela A1 - Zeller, Daniel A1 - Casanova-Molla, Jordi A1 - Wanner, Christoph A1 - Weidemann, Frank A1 - Katsarava, Zaza A1 - Sommer, Claudia T1 - Impaired small fiber conduction in patients with Fabry disease: a neurophysiological case–control study JF - BMC Neurology N2 - Background Fabry disease is an inborn lysosomal storage disorder which is associated with small fiber neuropathy. We set out to investigate small fiber conduction in Fabry patients using pain-related evoked potentials (PREP). Methods In this case–control study we prospectively studied 76 consecutive Fabry patients for electrical small fiber conduction in correlation with small fiber function and morphology. Data were compared with healthy controls using non-parametric statistical tests. All patients underwent neurological examination and were investigated with pain and depression questionnaires. Small fiber function (quantitative sensory testing, QST), morphology (skin punch biopsy), and electrical conduction (PREP) were assessed and correlated. Patients were stratified for gender and disease severity as reflected by renal function. Results All Fabry patients (31 men, 45 women) had small fiber neuropathy. Men with Fabry disease showed impaired cold (p < 0.01) and warm perception (p < 0.05), while women did not differ from controls. Intraepidermal nerve fiber density (IENFD) was reduced at the lower leg (p < 0.001) and the back (p < 0.05) mainly of men with impaired renal function. When investigating A-delta fiber conduction with PREP, men but not women with Fabry disease had lower amplitudes upon stimulation at face (p < 0.01), hands (p < 0.05), and feet (p < 0.01) compared to controls. PREP amplitudes further decreased with advance in disease severity. PREP amplitudes and warm (p < 0.05) and cold detection thresholds (p < 0.01) at the feet correlated positively in male patients. Conclusion Small fiber conduction is impaired in men with Fabry disease and worsens with advanced disease severity. PREP are well-suited to measure A-delta fiber conduction. KW - Fabry disease KW - Pain-related evoked potentials KW - Small fiber neuropathy KW - A-delta fibers Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-96527 UR - http://www.biomedcentral.com/1471-2377/13/47 ER - TY - JOUR A1 - Gunreben, Ignaz A1 - Geis, Christian A1 - Kleinschnitz, Christoph T1 - Acute tetraparesis secondary to bilateral precentral gyral cerebral ischemia: a case report JF - Journal of Medical Case Reports N2 - Introduction Sudden tetraparesis represents a neurological emergency and is most often caused by traumatic spinal cord injury, spinal epidural bleeding or brainstem ischemia and less frequently by medial disc herniation or spinal ischemia. Case presentation Here we report the rare case of an 82-year-old Caucasian man who developed severe tetraparesis four days after radical cystoprostatectomy. An emergency diagnostic study for spinal cord affection was normal. Brain magnetic resonance imaging revealed acute bilateral ischemic strokes in the precentral gyri as the underlying cause. Conclusions This case report underlines the need to also consider unusual causes of tetraparesis in an emergency situation apart from spinal cord or brain stem injury in order not to leave severe symptomatology unclear and possibly miss therapeutic options. KW - Medizin Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-96179 UR - http://www.jmedicalcasereports.com/content/7/1/61 ER - TY - THES A1 - Dreykluft, Angela T1 - The PD-1/B7-H1 Pathway in a Transgenic Mouse Model for Spontaneous Autoimmune Neuroinflammation: Immunological Studies on Devic B7-H1-/- Mice T1 - Der PD-1/B7-H1 Signalweg in einem transgenen Mausmodell für spontane autoimmune Neuroinflammation: Immunologische Studien an Devic B7-H1-/- Mäusen N2 - Multiple sclerosis is an autoimmune disease of the central nervous system characterized by inflammatory, demyelinating lesions and neuronal death. Formerly regarded as a variant of MS, neuromyelitis optica (NMO)/Devic’s disease is now recognized as a distinct neurological disorder exhibiting characteristic inflammatory and demyelinated foci in the optic nerves and the spinal cord sparing the brain. With the introduction of the double-transgenic “Devic mouse” model featuring spontaneous, adjuvant-free incidence of autoimmune neuroinflammation due to the interaction of transgenic MOG-specific T and B cells, a promising tool was found for the analysis of factors triggering or preventing autoimmunity. The co-inhibitory molecule B7-H1 has been proposed to contribute to the maintenance of peripheral tolerance and to confine autoimmune inflammatory damage via the PD-1/B7-H1 pathway. Compared to Devic B7-H1+/+ mice, Devic B7-H1-/- mice developed clinical symptoms with a remarkably higher incidence rate and faster kinetics emphasized by deteriorated disease courses and a nearly quadrupled mortality rate. Remarkably enlarged immune-cell accumulation in the CNS of Devic B7-H1-/- mice, in particular of activated MOG-specific CD4+ T cells, correlated with the more severe clinical features. Our studies showed that the CNS not only was the major site of myelin-specific CD4+ T-cell activation but also that B7-H1 expression within the target organ significantly influenced T-cell activation and differentiation levels. Analysis at disease maximum revealed augmented accumulation of MOG-specific CD4+ T cells in the peripheral lymphoid organs of Devic B7-H1-/- mice partly due to increased T-cell proliferation rates. Transgenic MOG-specific B cells of Devic B7-H1-/- mice activated MOG-specific CD4+ T cells more efficiently than B cells of Devic B7-H1+/+ mice. This observation indicated a relevant immune-modulating role of B7-H1 on APCs (antigen-presenting cells) in this mouse model. We also assumed altered thymic selection processes to be involved in increased peripheral CD4+ T-cell numbers of Devic B7-H1-/- mice as we found more thymocytes expressing the transgenic MOG-specific T-cell receptor (TCR). Moreover, preliminary in vitro experiments hinted on an enhanced survival of TCRMOG-transgenic CD4+ T cells of Devic B7-H1-/- mice; a mechanism that might as well have led to higher peripheral T-cell accumulation. Elevated levels of MOG-specific CD4+ T cells in the periphery of Devic B7-H1-/- mice could have entailed the higher quantities in the CNS. However, mechanisms such as CNS-specific proliferation and/or apoptosis/survival could also have contributed. This should be addressed in future investigations. Judging from in vitro migration assays and adoptive transfer experiments on RAG-1-/- recipient mice, migratory behavior of MOG-specific CD4+ T cells of Devic B7-H1+/+ and Devic B7-H1-/- mice seemed not to differ. However, enhanced expression of the transmigration-relevant integrin LFA-1 on CD4+ T cells in young symptom-free Devic B7-H1-/- mice might hint on temporally differently pronounced transmigration capacities during the disease course. Moreover, we attributed the earlier conversion of CD4+ T cells into Th1 effector cells in Devic B7-H1-/- mice during the initiation phase to the lack of co-inhibitory signaling via PD-1/B7-H1 possibly leading to an accelerated disease onset. Full blown autoimmune inflammatory processes could have masked these slight effects of B7-H1 in the clinical phase. Accordingly, at peak of the disease, Th1 and Th17 effector functions of peripheral CD4+ T cells were comparable in both mouse groups. Moreover, judging from titers of MOG-specific IgG1 and IgM antibodies, alterations in humoral immunity were not detected. Therefore, clinical differences could not be explained by altered T-cell or B-cell effector functions at disease maximum. B7-H1 rather seemed to take inhibitory effect in the periphery during the initiation phase only and consistently within the target organ by parenchymal expression. Our observations indicate that B7-H1 plays a relevant role in the regulation of T-cell responses in this mouse model for spontaneous CNS autoimmunity. By exerting immune-modulating effects in the preclinical as well as the clinical phase of the disease, B7-H1 contributed to the confinement of the immunopathological tissue damage in Devic B7-H1+/+ mice mirrored by later disease onsets and lower disease scores. As a model for spontaneous autoimmunity featuring a close to 100 % incidence rate, the Devic B7-H1-/- mouse may prove instrumental in clarifying disease-triggering and -limiting factors and in validating novel therapeutic approaches in the field of autoimmune neuroinflammation, in particular the human Devic’s disease. N2 - Multiple Sklerose ist eine Autoimmunerkrankung des zentralen Nervensystems, die durch entzündliche, demyelinisierende Läsionen und neuronalen Tod gekennzeichnet ist. Einst als Variante der MS betrachtet, gilt die Neuromyelitis optica (NMO) / Devic-Krankheit heute als eigenständige neurologische Erkrankung, bei der charakteristische Läsionen in den Sehnerven und im Rückenmark jedoch nicht im Gehirn auftreten. Mit der Einführung des doppelt-transgenen "Devic Maus"-Modells, bei dem es zur spontanen, Adjuvans-freien Inzidenz von autoimmuner Neuroinflammation durch Expression transgener MOG-spezifischer T- und B-Zellen kommt, wurde ein vielversprechendes Werkzeug für die Analyse von Faktoren gefunden, die Autoimmunität auslösen bzw. hemmen können. Das ko-inhibitorische Molekül B7-H1 trägt über den PD-1/B7-H1 Signalweg vermeintlich zur Aufrechterhaltung peripherer Toleranz bei. Devic B7-H1-/ - Mäuse entwickelten im Vergleich zu Devic B7-H1+/ + Mäusen Symptome, die mit deutlich höherer Inzidenz und schnellerer Kinetik einhergingen, unterstrichen von verstärkten Krankheitsverläufen und einer nahezu vervierfachten Sterblichkeit. Die verstärkte Akkumulierung von Immunzellen im ZNS, insbesondere von aktivierten MOG-spezifischen CD4+ T-Zellen, korrelierte mit den schwerwiegenderen klinischen Merkmalen. Unsere Untersuchungen zeigten nicht nur, dass die Aktivierung von myelin-spezifischen CD4+ T-Zellen hauptsächlich im ZNS stattfand, sondern auch, dass im Zielorgan exprimiertes B7-H1 maßgeblich den T-Zell-Aktivierungs- und -Differenzierungsgrad beeinflusste. Analysen am Krankheitsmaximum zeigten eine verstärkte Akkumulierung von MOG-spezifischen CD4+ T-Zellen in den Lymphorganen von Devic B7-H1-/- Mäusen, die wir teils auf erhöhte T-Zell-Proliferation zurückzuführten. Transgene MOG-spezifische B-Zellen der Devic B7-H1-/- Mäuse aktivierten effizienter als B-Zellen der Devic B7-H1+/+ Mäuse MOG-spezifische CD4+ T-Zellen. Dies deutet auf eine wichtige immunmodulierende Rolle von B7-H1 auf Antigen-präsentierenden Zellen in diesem Mausmodell hin. Veränderte Selektionsprozesse im Thymus trugen wohlmöglich zu den höheren CD4+ T-Zellzahlen in der Peripherie bei. Vorläufige in vitro Experimente deuteten auf ein verbessertes Überleben von TCRMOG-transgenen CD4+ T-Zellen aus Devic B7-H1-/- Mäusen hin. Eine erhöhte Anzahl von peripheren MOG-spezifischen CD4+ T-Zellen könnte zu den größeren Mengen im ZNS von Devic B7-H1-/- Mäusen geführt haben. Jedoch sind zusätzliche Mechanismen wie ZNS-spezifische Proliferation und/oder Apoptose bzw. Überleben denkbar. Dies sollte in zukünftigen Untersuchungen genauer analysiert werden. Anhand von in vitro-Migrationsassays und Adoptiver Transfer-Experimenten in RAG-1-/- Mäusen schlossen wir, dass das Migrationsverhalten von MOG-spezifischen CD4+ T-Zellen von Devic B7-H1-/- Mäusen nicht verändert war. Allerdings deutet die verstärkte Expression des transmigrationsrelevanten Intergins LFA-1 auf CD4+ T-Zellen in jungen, symptomfreien Devic B7-H1-/- Mäusen auf im Krankheitsverlauf zeitlich verschieden ausgeprägte Transmigrationskapazitäten hin. Die frühere Differenzierung von peripheren CD4+ T-Zellen in Th1-Effektorzellen in Devic B7-H1-/- Mäusen während der Initiationsphase schrieben wir der fehlenden inhibierenden Wirkung des PD-1/B7-H1 Signalwegs zu, was den früheren Krankheitsbeginn bedingt haben könnte. Stark ausgeprägte autoimmune Entzündungsreaktionen am Krankheitsmaximum maskierten jedoch wahrscheinlich diese schwachen Effekte von B7-H1. Dies wurde durch die Tatsache untermauert, dass am Krankheitsmaximum Th1- und Th17-Effektorfunktionen von peripheren CD4+ T-Zellen in beiden Mausgruppen vergleichbar ausgeprägt waren. Des Weiteren bestanden am Krankheitsmaximum keine Unterschiede in der humoralen Immunität. Die beobachteten klinischen Unterschiede waren demnach nicht durch veränderte periphere T-Zell- oder B-Zell-Effektorfunktionen in dieser Krankheitsphase erklärbar. Vielmehr scheint B7-H1 in der Peripherie ausschließlich während der Initiationsphase der Krankheit und fortwährend im Zielorgan durch seine parenchymale Expression immuninhibierend zu wirken. Unsere Beobachtungen zeigen, dass B7-H1 eine relevante Rolle bei der Immunregulierung im vorliegenden Mausmodell für spontane ZNS-Autoimmunität spielt. Durch immunmodulierende Effekte in der präklinischen sowie der klinischen Phase der Krankheit trug B7-H1 zu der Begrenzung der immunpathologischen Gewebeschädigung in Devic B7-H1+/+ Mäusen bei, sichtbar an einem späteren Krankheitsbeginn und leichteren -verlauf. Als Tiermodell für spontane ZNS-Autoimmunität mit nahezu 100 %iger Inzidenz könnte sich die Devic B7-H1-/- Maus als hilfreich bei der Klärung krankheitsauslösender und -limitierender Faktoren erweisen sowie bei der Validierung neuer therapeutischer Ansätze im Bereich der autoimmunen Neuroinflammation, insbesondere der Devic-Krankheit im Menschen. KW - Autoimmunität KW - Zentralnervensystem KW - Neuroinflammation KW - B7-H1 KW - Ko-inhibitorischer Signalweg KW - Devic Maus KW - autoimmunity KW - neuroinflammation KW - B7-H1 KW - co-inhibitory signalling KW - Devic mice KW - Maus KW - Entzündung KW - Signaltransduktion Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-83288 ER - TY - THES A1 - Groh, Janos Michael T1 - Pathogenic impact of immune cells in mouse models of neuronal ceroid lipofuscinosis T1 - Pathogener Einfluss von Immunzellen in Mausmodellen der Neuronalen Ceroid Lipofuszinose N2 - The neuronal ceroid lipofuscinoses (NCLs) are fatal neurodegenerative disorders in which the visual system is affected in early stages of disease. A typical accompanying feature is neuroinflammation, the pathogenic impact of which is presently unknown. In this study, the role of inflammatory cells in the pathogenesis was investigated in Palmitoyl-protein thioesterase 1-deficient (Ppt1-/-) and Ceroidlipofuscinosis, neuronal 3-deficient (Cln3-/-) mice, models of the infantile and juvenile forms of NCL, respectively. Focusing predominantly on the visual system, an infiltration of CD8+ cytotoxic Tlymphocytes and an activation of microglia/macrophage-like cells was observed early in disease. To analyze the pathogenic impact of lymphocytes, Ppt1-/- mice were crossbred with mice lacking lymphocytes (Rag1-/-) and axonal transport, perturbation and neuronal survival were scored. Lack of lymphocytes led to a significant amelioration of neuronal disease and reconstitution experiments revealed a crucial role of CD8+ cytotoxic T-lymphocytes. Lack of lymphocytes also caused an improved clinical phenotype and extended longevity. To investigate the impact of microglia/macrophage-like cells, Ppt1-/- and Cln3-/- mice were crossbred with mice lacking sialoadhesin (Sn-/-), a monocyte lineage-restricted cell adhesion molecule important for interactions between macrophage-like cells and lymphocytes. Similar to the lack of lymphocytes, absence of sialoadhesin significantly ameliorated the disease in Ppt1-/- and Cln3-/- mice. Taken together, both T-lymphocytes and microglia/macrophage-like cells were identified as pathogenic mediators in two distinct forms of fatal inherited neurodegenerative storage disorders. These studies expand the concept of secondary inflammation as a common pathomechanistic feature in some neurological diseases and provide novel insights that may be crucial for developing treatment strategies for different forms of NCL. N2 - Die Neuronalen Ceroid Lipofuszinosen (NCL) sind tödlich verlaufende neurodegenerative Erkrankungen, bei denen das visuelle System frühzeitig im Krankheitsverlauf betroffen ist. Eine typische Begleiterscheinung sind Entzündungsreaktionen, deren pathogenetischer Einfluss bisher ungeklärt ist. In dieser Studie wurde die Rolle von Entzündungszellen bei der Pathogenese in Palmitoyl-protein thioestease 1-defizienten (Ppt1-/-) und Ceroid-lipofuscinosis, neuronal 3-defizienten (Cln3-/-) Mäusen untersucht, den jeweiligen Modellen der Infantilen und Juvenilen Formen der NCL. Mit besonderem Augenmerk auf das visuelle System wurde früh in der Krankheit ein Aufkommen von CD8+ zytotoxischen T-Lymphozyten und eine Aktivierung von Mikroglia/Makrophagen-ähnlichen Zellen beobachtet. Um den pathogenetischen Einfluss der Lymphozyten zu klären, wurden Ppt1-/- Mäuse mit Mäusen verkreuzt, welche keine Lymphozyten besitzen (Rag1-/-). An den generierten Doppelmutanten wurden axonaler Transport, axonale Schädigung und neuronales Überleben bestimmt. Die Abwesenheit von Lymphozyten führte zu einer signifikanten Abmilderung der neuronalen Schädigung und Rekonstitutions-Experimente zeigten, dass CD8+ zytotoxische T-Lymphozyten eine entscheidende Rolle spielen. Die Abwesenheit dieser Lymphozyten führte außerdem zu einem abgemilderten klinischen Phänotyp und einem verlängerten Überleben. Um den Einfluss von Mikroglia/Makrophagen zu untersuchen wurden Ppt1-/- und Cln3-/- Mäuse mit Sialoadhesin-defizienten Mäusen (Sn-/-) verkreuzt. Sn ist ein Monozyten-spezifisches Zelladhäsionsmolekül, das wichtig für Interaktionen zwischen Makrophagen-ähnlichen Zellen und Lymphozyten ist. Ähnlich wie die Abwesenheit von Lymphozyten führte die Abwesenheit von Sialoadhesin zu einer signifikanten Abmilderung der Krankheit in Ppt1-/- und Cln3-/- Mäusen. Zusammengefasst wurden sowohl T-Lymphozyten als auch Mikroglia/Makrophagenähnliche Zellen als pathogenetische Mediatoren in zwei verschiedenen Formen von tödlich verlaufenden erblichen neurodegenerativen Speicherkrankheiten identifiziert. Diese Untersuchungen erweitern das Konzept der sekundären Entzündungsreaktion als verbreitete pathomechanistische Erscheinung in einigen neurologischen Erkrankungen und liefern neue Perspektiven für die Entwicklung von Behandlungsstrategien für verschiedene Formen der NCL. KW - Nervendegeneration KW - Maus KW - Entzündung KW - T-Lymphozyt KW - Neuronale Ceroid Lipofuszinose KW - Neuroinflammation KW - Neurodegeneration KW - axonaler Schaden KW - T-Lymphozyten KW - neuronal ceroid lipofuscinosis KW - neuroinflammation KW - neurodegeneration KW - axonal damage KW - T-lymphocytes Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-77684 ER -