TY - JOUR A1 - Hahn, Heidi A1 - Baunach, Gerald A1 - Bräutigam, Sandra A1 - Mergia, Ayalew A1 - Neumann-Haefelin, Dieter A1 - Daniel, Muthiah D. A1 - McClure, Myra O. A1 - Rethwilm, Axel T1 - Reactivity of primate sera to foamy virus Gag and Bet proteins N2 - In order to establish criteria for the Serodiagnosis of foamy virus infections we investigated the extent to which sera from iofected individuals of human and primate origin react with structural and non-structural virus proteins in immunoblot assays. Using lysates from infected cells as the source of virus antigen, antibodies were preferentially detected against the Gag proteins and the non-structural Bet protein. Both the Gag precursor molecules of 70 and 74K apparent M\(_r\) and the cytoplasmic 60K M\(_r\) Bet protein were found to be phosphorylated, the latter being synthesized in large amounts in infected cells. Rahbit antiserum raised against recombinant human foamy virus (HFV) Gag major capsid protein cross-reacted with foamy viruses of chimpanzee, gorilla, orang-utan, rhesus monkey and Mrican green monkey origin. This was reßected by a broad cross-reactivity of the respective monkey sera to the Gag proteins of the various foamy virus isolates. Cross-reactivity of antisera against the Bet protein was restricted to viruses from man and the great apes. Recombinant Gag and Bet proteins expressed in prokaryotes or in insect cells were readily recognized by foamy virus-positive primate sera. Screening serum samples from chimpanzees with HFV Gag and Bet proteins expressed by recombinant baculoviruses revealed that 18 out of 35 (52%) were positive for Gag antibodies. Of these, 13 (72 o/o) showed antiborlies against the Bet protein, indicating that Bet antigen is of value in sero1ogical screening for foamy virus infections. KW - Virologie Y1 - 1994 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-61366 ER - TY - JOUR A1 - Müller, J. G. A1 - Czub, S. A1 - Rethwilm, Axel A1 - Müller-Hermelink, H. K. T1 - Korrelation von Organpathologie und Verteilung virusreplizierenderZellen, nachgewiesen mit der RNA in situ Hybridisierungwährend der SIVmac-Infektion von Macaca mulatta T1 - Correlation of Organ Pathology and Distribution of SIV detected by in situ Hybridization during SIVmac Infection of Macaca mulatta N2 - No abstract available N2 - 22 juvenile rhesus macaques were infected i.v. with SIVmac and killed at defined timepoints after infection. Productively infected cells were detected by RNA in situ hybridization in the paraffin material. Their number was correlated with the pathology of lymph nodes, thymus, extranodallymphatic parenchyma and other organs. In the first weeks alllymphatic tissues and compartiments got infected, as weil as the brain, the bone marrow and other organs. The high virus replication during this first phase dissappeared with the onset of the seroconversion and remained low during all stages of atrophy of the lymphatic parenchyma. The atrophy of the lymphatic parenchyma and its microenvironment was not correlated with virus replication. This may implicate that a virostatic therapy might be more succesfull in the first weeks of infection. KW - Virologie Y1 - 1994 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-47331 ER - TY - JOUR A1 - Schliephake, Andreas W. A1 - Rethwilm, Axel T1 - Nuclear Localization of Foamy Virus Gag Precursor Protein N2 - All foamy viruses give rise to a strong nuclear staining when infected cells are reacted with sera from infected hosts. This nuclear ftuorescence distinguishes foamy viruses from all other retroviruses. The experiments reported here indicate that the foamy virus Gag precursor protein is transiently located in the nuclei of infected cells and this is the likely reason for the typical foamy virus nuclear fluorescence. By using the vaccinia virus expression system, a conserved basic sequence motif in the nucleocapsid domain of foamy virus Cag proteins was identified to be responsible for the nuclear transport of the gag precursor molecule. Tbis motif was also found to be able to direct a heterologous protein, the Gag protein of human immunodeficiency virus, into the nucleus. KW - Virologie Y1 - 1994 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-61371 ER - TY - JOUR A1 - Schneider-Schaulies, Sibylle A1 - Schneider-Schaulies, Jürgen A1 - Schuster, A. A1 - Bayer, M. A1 - Pavlovic, J. A1 - ter Meulen, V. T1 - Cell type specific MxA-mediated inhibition of measles virus transcription in human brain cells N2 - No abstract available KW - Virologie Y1 - 1994 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-62255 ER - TY - JOUR A1 - Segev, Y. A1 - Rager-Zisman, B. A1 - Isakov, N. A1 - Schneider-Schaulies, Sibylle A1 - ter Meulen, V. A1 - Udem, S. A. A1 - Segal, S. A1 - Wolfson, M. T1 - Reversal of measles virus mediated increase of phosphorylating activity in persistently infected mouse neuroblastoma cells by anti measles antibodies N2 - No abstract available KW - Virologie Y1 - 1994 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-62362 ER - TY - JOUR A1 - Siwka, Wieslaw A1 - Schwinn, Andreas A1 - Baczko, Knut A1 - Pardowitz, Iancu A1 - Mhalu, Fred A1 - Shao, John A1 - Rethwilm, Axel A1 - ter Meulen, Volker T1 - vpu and env sequence variability of HIV-1 isolates from Tanzania N2 - No abstract available KW - Virologie Y1 - 1994 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-61355 ER -