TY - JOUR A1 - Summa, Michela T1 - How are fictions given? Conjoining the ‘artifactual theory’ and the ‘imaginary-object theory’ JF - Synthese N2 - According to the so-called ‘artifactual theory’ of fiction, fictional objects are to be considered as abstract artifacts. Within this framework, fictional objects are defined on the basis of their complex dependence on literary works, authors, and readership. This theory is explicitly distinguished from other approaches to fictions, notably from the imaginary-object theory. In this article, I argue that the two approaches are not mutually exclusive but can and should be integrated. In particular, the ontology of fiction can be fruitfully supplemented by a phenomenological analysis, which allows us to clarify the defining modes of givenness of fictional objects. Likewise, based on the results of the artifactual theory, some assumptions in the imaginary-object theory, which are liable to be interpreted as laying the ground to phenomenalism, can be corrected. KW - phenomenology KW - fiction KW - ontology KW - givenness KW - constitution KW - imagination Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-269845 SN - 1573-0964 VL - 199 IS - 5-6 ER - TY - JOUR A1 - Loda, Sophia A1 - Krebs, Jonathan A1 - Danhof, Sophia A1 - Schreder, Martin A1 - Solimando, Antonio G. A1 - Strifler, Susanne A1 - Rasche, Leo A1 - Kortüm, Martin A1 - Kerscher, Alexander A1 - Knop, Stefan A1 - Puppe, Frank A1 - Einsele, Hermann A1 - Bittrich, Max T1 - Exploration of artificial intelligence use with ARIES in multiple myeloma research JF - Journal of Clinical Medicine N2 - Background: Natural language processing (NLP) is a powerful tool supporting the generation of Real-World Evidence (RWE). There is no NLP system that enables the extensive querying of parameters specific to multiple myeloma (MM) out of unstructured medical reports. We therefore created a MM-specific ontology to accelerate the information extraction (IE) out of unstructured text. Methods: Our MM ontology consists of extensive MM-specific and hierarchically structured attributes and values. We implemented “A Rule-based Information Extraction System” (ARIES) that uses this ontology. We evaluated ARIES on 200 randomly selected medical reports of patients diagnosed with MM. Results: Our system achieved a high F1-Score of 0.92 on the evaluation dataset with a precision of 0.87 and recall of 0.98. Conclusions: Our rule-based IE system enables the comprehensive querying of medical reports. The IE accelerates the extraction of data and enables clinicians to faster generate RWE on hematological issues. RWE helps clinicians to make decisions in an evidence-based manner. Our tool easily accelerates the integration of research evidence into everyday clinical practice. KW - natural language processing KW - ontology KW - artificial intelligence KW - multiple myeloma KW - real world evidence Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-197231 SN - 2077-0383 VL - 8 IS - 7 ER - TY - JOUR A1 - Kempf, Sebastian A1 - Krug, Markus A1 - Puppe, Frank T1 - KIETA: Key-insight extraction from scientific tables JF - Applied Intelligence N2 - An important but very time consuming part of the research process is literature review. An already large and nevertheless growing ground set of publications as well as a steadily increasing publication rate continue to worsen the situation. Consequently, automating this task as far as possible is desirable. Experimental results of systems are key-insights of high importance during literature review and usually represented in form of tables. Our pipeline KIETA exploits these tables to contribute to the endeavor of automation by extracting them and their contained knowledge from scientific publications. The pipeline is split into multiple steps to guarantee modularity as well as analyzability, and agnosticim regarding the specific scientific domain up until the knowledge extraction step, which is based upon an ontology. Additionally, a dataset of corresponding articles has been manually annotated with information regarding table and knowledge extraction. Experiments show promising results that signal the possibility of an automated system, while also indicating limits of extracting knowledge from tables without any context. KW - table extraction KW - table understanding KW - ontology KW - key-insight extraction KW - information extraction Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-324180 SN - 0924-669X VL - 53 IS - 8 ER -