TY - JOUR A1 - Herbert, Saskia-Laureen A1 - Fick, Andrea A1 - Heydarian, Motaharehsadat A1 - Metzger, Marco A1 - Wöckel, Achim A1 - Rudel, Thomas A1 - Kozjak-Pavlovic, Vera A1 - Wulff, Christine T1 - Establishment of the SIS scaffold-based 3D model of human peritoneum for studying the dissemination of ovarian cancer JF - Journal of Tissue Engineering N2 - Ovarian cancer is the second most common gynecological malignancy in women. More than 70% of the cases are diagnosed at the advanced stage, presenting as primary peritoneal metastasis, which results in a poor 5-year survival rate of around 40%. Mechanisms of peritoneal metastasis, including adhesion, migration, and invasion, are still not completely understood and therapeutic options are extremely limited. Therefore, there is a strong requirement for a 3D model mimicking the in vivo situation. In this study, we describe the establishment of a 3D tissue model of the human peritoneum based on decellularized porcine small intestinal submucosa (SIS) scaffold. The SIS scaffold was populated with human dermal fibroblasts, with LP-9 cells on the apical side representing the peritoneal mesothelium, while HUVEC cells on the basal side of the scaffold served to mimic the endothelial cell layer. Functional analyses of the transepithelial electrical resistance (TEER) and the FITC-dextran assay indicated the high barrier integrity of our model. The histological, immunohistochemical, and ultrastructural analyses showed the main characteristics of the site of adhesion. Initial experiments using the SKOV-3 cell line as representative for ovarian carcinoma demonstrated the usefulness of our models for studying tumor cell adhesion, as well as the effect of tumor cells on endothelial cell-to-cell contacts. Taken together, our data show that the novel peritoneal 3D tissue model is a promising tool for studying the peritoneal dissemination of ovarian cancer. KW - ovarian cancer KW - 3D tissue model KW - co-culture KW - peritoneal metastasis KW - cancer dissemination Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-301311 SN - 2041-7314 VL - 13 ER - TY - JOUR A1 - Chopra, Martin A1 - Biehl, Marlene A1 - Steinfatt, Tim A1 - Brandl, Andreas A1 - Kums, Juliane A1 - Amich, Jorge A1 - Vaeth, Martin A1 - Kuen, Janina A1 - Holtappels, Rafaela A1 - Podlech, Jürgen A1 - Mottok, Anja A1 - Kraus, Sabrina A1 - Jordán-Garotte, Ana-Laura A1 - Bäuerlein, Carina A. A1 - Brede, Christian A1 - Ribechini, Eliana A1 - Fick, Andrea A1 - Seher, Axel A1 - Polz, Johannes A1 - Ottmueller, Katja J. A1 - Baker, Jeannette A1 - Nishikii, Hidekazu A1 - Ritz, Miriam A1 - Mattenheimer, Katharina A1 - Schwinn, Stefanie A1 - Winter, Thorsten A1 - Schäfer, Viktoria A1 - Krappmann, Sven A1 - Einsele, Hermann A1 - Müller, Thomas D. A1 - Reddehase, Matthias J. A1 - Lutz, Manfred B. A1 - Männel, Daniela N. A1 - Berberich-Siebelt, Friederike A1 - Wajant, Harald A1 - Beilhack, Andreas T1 - Exogenous TNFR2 activation protects from acute GvHD via host T reg cell expansion JF - Journal of Experimental Medicine N2 - Donor CD4\(^+\)Foxp3\(^+\) regulatory T cells (T reg cells) suppress graft-versus-host disease (GvHD) after allogeneic hematopoietic stem cell transplantation (HCT allo-HCT]). Current clinical study protocols rely on the ex vivo expansion of donor T reg cells and their infusion in high numbers. In this study, we present a novel strategy for inhibiting GvHD that is based on the in vivo expansion of recipient T reg cells before allo-HCT, exploiting the crucial role of tumor necrosis factor receptor 2 (TNFR2) in T reg cell biology. Expanding radiation-resistant host T reg cells in recipient mice using a mouse TNFR2-selective agonist before allo-HCT significantly prolonged survival and reduced GvHD severity in a TNFR2-and T reg cell-dependent manner. The beneficial effects of transplanted T cells against leukemia cells and infectious pathogens remained unaffected. A corresponding human TNFR2-specific agonist expanded human T reg cells in vitro. These observations indicate the potential of our strategy to protect allo-HCT patients from acute GvHD by expanding T reg cells via selective TNFR2 activation in vivo. KW - Tumor-necrosis-factor KW - Regulatory-cells KW - Bone marrow transplantantation KW - Graft-versus-leukemia KW - Rheumatoid arthritis KW - Autoimmune diseases KW - Factor receptor KW - Alpha therapy KW - Expression KW - Suppression Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-187640 VL - 213 IS - 9 ER -