TY - JOUR A1 - Peters, Simon A1 - Fohmann, Ingo A1 - Rudel, Thomas A1 - Schubert-Unkmeir, Alexandra T1 - A Comprehensive Review on the Interplay between Neisseria spp. and Host Sphingolipid Metabolites JF - Cells N2 - Sphingolipids represent a class of structural related lipids involved in membrane biology and various cellular processes including cell growth, apoptosis, inflammation and migration. Over the past decade, sphingolipids have become the focus of intensive studies regarding their involvement in infectious diseases. Pathogens can manipulate the sphingolipid metabolism resulting in cell membrane reorganization and receptor recruitment to facilitate their entry. They may recruit specific host sphingolipid metabolites to establish a favorable niche for intracellular survival and proliferation. In contrast, some sphingolipid metabolites can also act as a first line defense against bacteria based on their antimicrobial activity. In this review, we will focus on the strategies employed by pathogenic Neisseria spp. to modulate the sphingolipid metabolism and hijack the sphingolipid balance in the host to promote cellular colonization, invasion and intracellular survival. Novel techniques and innovative approaches will be highlighted that allow imaging of sphingolipid derivatives in the host cell as well as in the pathogen. KW - sphingolipids KW - host–pathogen interaction KW - Neisseria meningitidis KW - Neisseria gonorrhoeae Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-250203 SN - 2073-4409 VL - 10 IS - 11 ER - TY - JOUR A1 - Peters, Simon A1 - Kaiser, Lena A1 - Fink, Julian A1 - Schumacher, Fabian A1 - Perschin, Veronika A1 - Schlegel, Jan A1 - Sauer, Markus A1 - Stigloher, Christian A1 - Kleuser, Burkhard A1 - Seibel, Juergen A1 - Schubert-Unkmeir, Alexandra T1 - Click-correlative light and electron microscopy (click-AT-CLEM) for imaging and tracking azido-functionalized sphingolipids in bacteria JF - Scientific Reports N2 - Sphingolipids, including ceramides, are a diverse group of structurally related lipids composed of a sphingoid base backbone coupled to a fatty acid side chain and modified terminal hydroxyl group. Recently, it has been shown that sphingolipids show antimicrobial activity against a broad range of pathogenic microorganisms. The antimicrobial mechanism, however, remains so far elusive. Here, we introduce 'click-AT-CLEM', a labeling technique for correlated light and electron microscopy (CLEM) based on the super-resolution array tomography (srAT) approach and bio-orthogonal click chemistry for imaging of azido-tagged sphingolipids to directly visualize their interaction with the model Gram-negative bacterium Neisseria meningitidis at subcellular level. We observed ultrastructural damage of bacteria and disruption of the bacterial outer membrane induced by two azido-modified sphingolipids by scanning electron microscopy and transmission electron microscopy. Click-AT-CLEM imaging and mass spectrometry clearly revealed efficient incorporation of azido-tagged sphingolipids into the outer membrane of Gram-negative bacteria as underlying cause of their antimicrobial activity. KW - antimicrobials KW - biological techniques KW - imaging KW - microbiology KW - microbiology techniques KW - microscopy Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259147 VL - 11 IS - 1 ER - TY - JOUR A1 - Schlegel, Jan A1 - Peters, Simon A1 - Doose, Sören A1 - Schubert-Unkmeir, Alexandra A1 - Sauer, Markus T1 - Super-resolution microscopy reveals local accumulation of plasma membrane gangliosides at Neisseria meningitidis Invasion Sites JF - Frontiers in Cell and Developmental Biology N2 - Neisseria meningitidis (meningococcus) is a Gram-negative bacterium responsible for epidemic meningitis and sepsis worldwide. A critical step in the development of meningitis is the interaction of bacteria with cells forming the blood-cerebrospinal fluid barrier, which requires tight adhesion of the pathogen to highly specialized brain endothelial cells. Two endothelial receptors, CD147 and the β2-adrenergic receptor, have been found to be sequentially recruited by meningococci involving the interaction with type IV pilus. Despite the identification of cellular key players in bacterial adhesion the detailed mechanism of invasion is still poorly understood. Here, we investigated cellular dynamics and mobility of the type IV pilus receptor CD147 upon treatment with pili enriched fractions and specific antibodies directed against two extracellular Ig-like domains in living human brain microvascular endothelial cells. Modulation of CD147 mobility after ligand binding revealed by single-molecule tracking experiments demonstrates receptor activation and indicates plasma membrane rearrangements. Exploiting the binding of Shiga (STxB) and Cholera toxin B (CTxB) subunits to the two native plasma membrane sphingolipids globotriaosylceramide (Gb3) and raft-associated monosialotetrahexosylganglioside GM1, respectively, we investigated their involvement in bacterial invasion by super-resolution microscopy. Structured illumination microscopy (SIM) and direct stochastic optical reconstruction microscopy (dSTORM) unraveled accumulation and coating of meningococci with GM1 upon cellular uptake. Blocking of CTxB binding sites did not impair bacterial adhesion but dramatically reduced bacterial invasion efficiency. In addition, cell cycle arrest in G1 phase induced by serum starvation led to an overall increase of GM1 molecules in the plasma membrane and consequently also in bacterial invasion efficiency. Our results will help to understand downstream signaling events after initial type IV pilus-host cell interactions and thus have general impact on the development of new therapeutics targeting key molecules involved in infection. KW - Neisseria meningitidis KW - sphingolipids KW - gangliosides and lipid rafts KW - super-resolution microscopy KW - single-molecule tracking Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201639 VL - 7 IS - 194 ER - TY - THES A1 - Peters, Simon T1 - The impact of sphingolipids on \(Neisseria\) \(meningitidis\) and their role in meningococcal pathogenicity T1 - Einfluss von Sphingolipiden auf \(Neisseria\) \(meningitidis\) und deren Bedeutung für die Pathogenität N2 - The obligate human pathogen Neisseria meningitidis is a major cause of sepsis and meningitis worldwide. It affects mainly toddlers and infants and is responsible for thousands of deaths each year. In this study, different aspects of the importance of sphingolipids in meningococcal pathogenicity were investigated. In a first step, the acid sphingomyelinase (ASM), which degrades membrane sphingomyelin to ceramide, was studied in the context of meningococcal infection. A requirement for ASM surface activity is its translocation from the lysosomal compartment to the cell surface, a process that is currently poorly understood. This study used various approaches, including classical invasion and adherence assays, flow cytometry, and classical and super resolution immunofluorescence microscopy (dSTORM). The results showed that the live, highly piliated N. meningitidis strain 8013/12 induced calcium-dependent ASM translocation in human brain microvascular endothelial cells (HBMEC). Furthermore, it promoted the formation of ceramide-rich platforms (CRPs). In addition, ASM translocation and CRP formation were observed after treating the cells with pili-enriched fractions derived from the same strain. The importance for N. meningitidis to utilize this pathway was shown by the inhibition of the calcium-dependent ASM translocation, which greatly decreased the number of invasive bacteria. I also investigated the importance of the glycosphingolipids GM1 and Gb3. The results showed that GM1, but not Gb3, plays an important role in the ability of N. meningitidis to invade HBMEC. By combining dSTORM imaging and microbiological approaches, we demonstrated that GM1 accumulated prolifically around bacteria during the infection, and that this interaction seemed essential for meningococcal invasion. Sphingolipids are not only known for their beneficial effect on pathogens. Sphingoid bases, including sphingosine, are known for their antimicrobial activity. In the last part of this study, a novel correlative light and electron microscopy approach was established in the combination with click chemistry to precisely localize azido-functionalized sphingolipids in N. meningitidis. The result showed a distinct concentration-dependent localization in either the outer membrane (low concentration) or accumulated in the cytosol (high concentration). This pattern was confirmed by mass spectrometry on separated membrane fractions. Our data provide a first insight into the underlying mechanism of antimicrobial sphingolipids. N2 - Der obligate Humanpathogen Neisseria meningitidis ist weltweit einer der Hauptursachen für Sepsis und Meningitis. Er befällt vor allem Kleinkinder und Säuglinge und ist jedes Jahr für Tausende von Todesfällen verantwortlich. In dieser Studie wurden verschiedene Aspekte der Bedeutung von Sphingolipiden bei der Pathogenität von Meningokokken untersucht. In einem ersten Schritt wurde die saure Sphingomyelinase (ASM), die Membran-Sphingomyelin zu Ceramid abbaut, im Zusammenhang mit einer Meningokokken-Infektion untersucht. Eine Voraussetzung für die Oberflächenaktivität der ASM ist ihre Translokation vom lysosomalen Kompartiment auf die Zelloberfläche, ein Prozess, der derzeit noch wenig verstanden wird. In dieser Studie wurden verschiedene Ansätze verwendet, darunter klassische Invasions- und Adhärenztests, Durchflusszytometrie sowie klassische und superauflösende Immunfluoreszenzmikroskopie (dSTORM). Die Ergebnisse zeigten, dass der lebende, hochpiliatisierte N. meningitidis Stamm 8013/12 eine kalziumabhängige ASM-Translokation in mikrovaskulären Endothelzellen des menschlichen Gehirns (HBMEC) induzierte. Des Weiteren förderte er die Bildung Ceramid-reicher Plattformen (CRPs). Zusätzlich wurden ASM-Translokation und CRP-Bildung beobachtet, nachdem die Zellen mit pili-angereicherten Fraktionen desselben Stammes behandelt worden waren. Die Bedeutung für N. meningitidis in der Pathogenese zeigte sich durch die Hemmung der Calcium-abhängigen ASM-Translokation, wodurch die Zahl der invasiven Bakterien stark reduziert wurde. Ich untersuchte auch die Bedeutung der Glykosphingolipide GM1 und Gb3. Die Ergebnisse zeigten, dass GM1, aber nicht Gb3, eine wichtige Rolle bei der Fähigkeit von N. meningitidis spielt, in Gehirnendothelzellen einzudringen. Durch die Kombination von dSTORM-Bildgebung und mikrobiologischen Ansätzen konnten wir zeigen, dass sich GM1 während der Infektion vermehrt um die Bakterien herum anreicherte und dass diese Interaktion für die Invasion von Meningokokken essenziell ist. Sphingolipide sind nicht nur für ihre positive Wirkung auf Krankheitserreger bekannt. Sphingoidbasen, einschließlich Sphingosin, sind zusätzlich für ihre antimikrobielle Aktivität bekannt. Im letzten Teil dieser Studie wurde ein neuartiger korrelativer licht- und elektronenmikroskopischer Ansatz in der Kombination mit Click-Chemie etabliert, um azidofunktionalisierte Sphingolipide in N. meningitidis genau zu lokalisieren. Das Ergebnis zeigte eine deutliche konzentrationsabhängige Lokalisation entweder in der äußeren Membran (niedrige Konzentration) oder akkumuliert im Zytosol (hohe Konzentration). Dieses Muster konnte durch einen Massenspektrometrischen Ansatz bestätigt werden. Hierfür wurde eine Separation der inneren und äußeren Membran, nach Behandlung mit der niedrigen Konzentration, etabliert. Die verschiedenen Membranfraktionen wurden anschließend auf ihren Gehalt an funktionalisierten Sphingolipiden hin untersucht und bestätigten die lokalisierung in der äußeren Membran. Unsere Daten geben einen ersten Einblick in den zugrundeliegenden Mechanismus der antimikrobiellen Sphingolipide. KW - Neisseria meningitidis KW - Sphingolipide KW - Infektion KW - Pathogenität KW - host-pathogen interaction KW - antimicrobial Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-226233 ER -