TY - JOUR A1 - Munz, Eberhard A1 - Jakob, Peter M. A1 - Borisjuk, Ljudmilla T1 - The potential of nuclear magnetic resonance to track lipids in planta JF - Biochimie N2 - Nuclear Magnetic Resonance (NMR) provides a highly flexible platform for non invasive analysis and imaging biological samples, since the manipulation of nuclear spin allows the tailoring of experiments to maximize the informativeness of the data. MRI is capable of visualizing a holistic picture of the lipid storage in living plant/seed. This review has sought to explain how the technology can be used to acquire functional and physiological data from plant samples, and how to exploit it to characterize lipid deposition in vivo. At the same time, we have referred to the current limitations of NMR technology as applied to plants, and in particular of the difficulty of transferring methodologies optimized for animal/medical subjects to plant ones. A forward look into likely developments in the field is included, anticipating its key future role in the study of living plant. KW - coconut cocos-nucifera KW - H-1-NMR spectroscopy KW - NMR-spectroscopy KW - camelina-sativa KW - high-throughput KW - oil storage KW - seeds KW - accumulation KW - field KW - metabolism KW - NMR KW - Lipid KW - MRI KW - CSI KW - Plants KW - Seeds Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-186828 VL - 130 ER - TY - JOUR A1 - Isaias, Ioannis U. A1 - Trujillo, Paula A1 - Summers, Paul A1 - Marotta, Giorgio A1 - Mainardi, Luca A1 - Pezzoli, Gianni A1 - Zecca, Luigi A1 - Costa, Antonella T1 - Neuromelanin Imaging and Dopaminergic Loss in Parkinson's Disease JF - Frontiers in Aging Neuroscience N2 - Parkinson's disease (PD) is a progressive neurodegenerative disorder in which the major pathologic substrate is a loss of dopaminergic neurons from the substantia nigra. Our main objective was to determine the correspondence between changes in the substantia nigra, evident in neuromelanin and iron sensitive magnetic resonance imaging (MRI), and dopaminergic striatal innervation loss in patients with PD. Eighteen patients and 18 healthy control subjects were included in the study. Using neuromelanin-MRI, we measured the volume of the substantia nigra and the contrast-to-noise-ratio between substantia nigra and a background region. The apparent transverse relaxation rate and magnetic susceptibility of the substantia nigra were calculated from dual-echo MRI. Striatal dopaminergic innervation was measured as density of dopamine transporter (DAT) by means of single-photon emission computed tomography and [123I] N-ω-fluoropropyl-2b-carbomethoxy-3b-(4-iodophenyl) tropane. Patients showed a reduced volume of the substantia nigra and contrast-to-noise-ratio and both positively correlated with the corresponding striatal DAT density. The apparent transverse relaxation rate and magnetic susceptibility values of the substantia nigra did not differ between patients and healthy controls. The best predictor of DAT reduction was the volume of the substantia nigra. Clinical and imaging correlations were also investigated for the locus coeruleus. Our results suggest that neuromelanin-MRI can be used for quantifying substantia nigra pathology in PD where it closely correlates with dopaminergic striatal innervation loss. Longitudinal studies should further explore the role of Neuromelanin-MRI as an imaging biomarker of PD, especially for subjects at risk of developing the disease. KW - MRI KW - neuromelanin KW - dopamine KW - Parkinson's disease KW - FP-CIT SPECT Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-164046 VL - 8 IS - 196 ER - TY - JOUR A1 - Gilbert, Fabian A1 - Böhm, Dirk A1 - Eden, Lars A1 - Schmalzl, Jonas A1 - Meffert, Rainer H. A1 - Köstler, Herbert A1 - Weng, Andreas M. A1 - Ziegler, Dirk T1 - Comparing the MRI-based Goutallier Classification to an experimental quantitative MR spectroscopic fat measurement of the supraspinatus muscle JF - BMC Musculoskeletal Disorders N2 - Background The Goutallier Classification is a semi quantitative classification system to determine the amount of fatty degeneration in rotator cuff muscles. Although initially proposed for axial computer tomography scans it is currently applied to magnet-resonance-imaging-scans. The role for its clinical use is controversial, as the reliability of the classification has been shown to be inconsistent. The purpose of this study was to compare the semi quantitative MRI-based Goutallier Classification applied by 5 different raters to experimental MR spectroscopic quantitative fat measurement in order to determine the correlation between this classification system and the true extent of fatty degeneration shown by spectroscopy. Methods MRI-scans of 42 patients with rotator cuff tears were examined by 5 shoulder surgeons and were graduated according to the MRI-based Goutallier Classification proposed by Fuchs et al. Additionally the fat/water ratio was measured with MR spectroscopy using the experimental SPLASH technique. The semi quantitative grading according to the Goutallier Classification was statistically correlated with the quantitative measured fat/water ratio using Spearman’s rank correlation. Results Statistical analysis of the data revealed only fair correlation of the Goutallier Classification system and the quantitative fat/water ratio with R = 0.35 (p < 0.05). By dichotomizing the scale the correlation was 0.72. The interobserver and intraobserver reliabilities were substantial with R = 0.62 and R = 0.74 (p < 0.01). Conclusion The correlation between the semi quantitative MRI based Goutallier Classification system and MR spectroscopic fat measurement is weak. As an adequate estimation of fatty degeneration based on standard MRI may not be possible, quantitative methods need to be considered in order to increase diagnostic safety and thus provide patients with ideal care in regard to the amount of fatty degeneration. Spectroscopic MR measurement may increase the accuracy of the Goutallier classification and thus improve the prediction of clinical results after rotator cuff repair. However, these techniques are currently only available in an experimental setting. KW - rotator cuff KW - MRI KW - spectroscopy KW - goutallier KW - classification KW - shoulder surgery Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-147788 VL - 17 IS - 355 ER -