TY - JOUR A1 - Jordan, Martin C. A1 - Hufnagel, Lukas A1 - McDonogh, Miriam A1 - Paul, Mila M. A1 - Schmalzl, Jonas A1 - Kupczyk, Eva A1 - Jansen, Hendrik A1 - Heilig, Philipp A1 - Meffert, Rainer H. A1 - Hoelscher-Doht, Stefanie T1 - Surgical fixation of calcaneal beak fractures — biomechanical analysis of different osteosynthesis techniques JF - Frontiers in Bioengineering and Biotechnology N2 - The calcaneal beak fracture is a rare avulsion fracture of the tuber calcanei characterized by a solid bony fragment at the Achilles tendon insertion. Treatment usually requires osteosynthesis. However, lack of biomechanical understanding of the ideal fixation technique persists. A beak fracture was simulated in synthetic bones and assigned to five different groups of fixation: A) 6.5-mm partial threaded cannulated screws, B) 4.0-mm partial threaded cannulated screws, C) 5.0-mm headless cannulated compression screws, D) 2.3-mm locking plate, and E) 2.8-mm locking plate. Different traction force levels were applied through an Achilles tendon surrogate in a material-testing machine on all stabilized synthetic bones. Outcome measures were peak-to-peak displacement, total displacement, plastic deformation, stiffness, visual-fracture-line displacement, and mode of implant failure. The 2.3- and 2.8-mm plating groups showed a high drop-out rate at 100 N tension force and failed under higher tension levels of 200 N. The fracture fixation using 4.0-mm partial threaded screws showed a significantly higher repair strength and was able to withhold cyclic loading up to 300 N. The lowest peak-to-peak displacement and the highest load-to-failure and stiffness were provided by fracture fixation using 6.5-mm partial threaded cannulated screws or 5.0-mm headless cannulated compression screws. As anticipated, large 6.5-mm screw diameters provide the best biomechanical fixation. Surprisingly, the 5.0-mm headless cannulated compression screws yield reliable stability despite the absent screw head and washer. When such large screws cannot be applied, 4.0-mm screws also allow reasonable fixation strength. Plate fixation should be implemented with precaution and in combination with a restrictive postoperative motion protocol. Finally, clinical cases about the surgical application and recovery are included. KW - foot KW - ankle KW - Achilles KW - tendon KW - fracture Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-282792 SN - 2296-4185 VL - 10 ER - TY - JOUR A1 - Heilig, Philipp A1 - Faerber, Lars-Christopher A1 - Paul, Mila M. A1 - Kupczyk, Eva A1 - Meffert, Rainer H. A1 - Jordan, Martin C. A1 - Hoelscher-Doht, Stefanie T1 - Plate osteosynthesis combined with bone cement provides the highest stability for tibial head depression fractures under high loading conditions JF - Scientific Reports N2 - Older patients sustaining tibial head depression fractures often cannot follow the post-operative rehabilitation protocols with partial weight-bearing of the affected limb, leading to osteosynthesis failure, cartilage step-off and arthritis development. Therefore, the aim of this study was to analyse the biomechanical performance of different types of osteosyntheses alone and in combination with bone cement simulating cyclically high loading conditions of tibial head depression fractures. Lateral tibial head depression fractures (AO: 41-B2.2; Schatzker type III) were created in synthetic bones and stabilized using three different osteosyntheses alone and in combination with a commonly used bone cement (chronOS™): 2 screws, 4 screws in the jail technique and a lateral angle-stable buttress plate. After fixation, the lateral tibial plateau was axially loaded in two, from each other independent testing series: In the first test protocol, 5000 cycles with 500 N and in the end load-to-failure tests were performed. In the second test protocol, the cyclic loading was increased to 1000 N. Parameters of interest were the displacement of the articular fracture fragment, the stiffness and the maximum load. The osteosyntheses revealed a higher stiffness in combination with bone cement compared to the same type of osteosynthesis alone (e.g., 500 N level: 2 screws 383 ± 43 N/mm vs. 2 screws + chronOs 520 ± 108 N/mm, increase by 36%, p < 0.01; 4 screws 368 ± 97 N/mm vs. 4 screws + chronOS 516 ± 109 N/mm, increase by 40%, p < 0.01; plate: 509 ± 73 N/mm vs. plate + chronOs 792 ± 150 N/mm, increase by 56%, p < 0.01). Bone cement reduced the displacement of the plate significantly (500 N level: plate: 8.9 ± 2.8 mm vs. plate + chronOs: 3.1 ± 1.4 mm, reduction by 65%, p < 0.01; 1000 N level: 16.9 ± 3.6 mm vs 5.6 ± 1.3 mm, reduction by 67%, p < 0.01). Thus, the highest stiffness and lowest displacement values were found when using the plate with bone cement in both loading conditions (500 N level: 2 screws + chronOs 3.7 ± 1.3 mm, 4 screws + chronOs 6.2 ± 2.4 mm; 1000 N level: 2 screws + chronOs 6.5 ± 1.2 mm, 4 screws + chronOs 5.7 ± 0.8 mm). From a biomechanical perspective, plate osteosynthesis of tibial head depression fractures should always be combined with bone cement, provides higher stability than 2-screw and 4-screw fixation and is a valid treatment option in cases where extraordinary stability is required. KW - head depression fractures KW - osteosynthesis KW - arthritis Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-299782 VL - 12 IS - 1 ER - TY - JOUR A1 - Heilig, Philipp A1 - Sandner, Phoebe A1 - Jordan, Martin Cornelius A1 - Jakubietz, Rafael Gregor A1 - Meffert, Rainer Heribert A1 - Gbureck, Uwe A1 - Hoelscher-Doht, Stefanie T1 - Experimental drillable magnesium phosphate cement is a promising alternative to conventional bone cements JF - Materials N2 - Clinically used mineral bone cements lack high strength values, absorbability and drillability. Therefore, magnesium phosphate cements have recently received increasing attention as they unify a high mechanical performance with presumed degradation in vivo. To obtain a drillable cement formulation, farringtonite (Mg\(_3\)(PO\(_4\))\(_2\)) and magnesium oxide (MgO) were modified with the setting retardant phytic acid (C\(_6\)H\(_{18}\)O\(_{24}\)P\(_6\)). In a pre-testing series, 13 different compositions of magnesium phosphate cements were analyzed concentrating on the clinical demands for application. Of these 13 composites, two cement formulations with different phytic acid content (22.5 wt% and 25 wt%) were identified to meet clinical demands. Both formulations were evaluated in terms of setting time, injectability, compressive strength, screw pullout tests and biomechanical tests in a clinically relevant fracture model. The cements were used as bone filler of a metaphyseal bone defect alone, and in combination with screws drilled through the cement. Both formulations achieved a setting time of 5 min 30 s and an injectability of 100%. Compressive strength was shown to be ~12–13 MPa and the overall displacement of the reduced fracture was <2 mm with and without screws. Maximum load until reduced fracture failure was ~2600 N for the cements only and ~3800 N for the combination with screws. Two new compositions of magnesium phosphate cements revealed high strength in clinically relevant biomechanical test set-ups and add clinically desired characteristics to its strength such as injectability and drillability. KW - magnesium phosphate cement KW - phytic acid KW - inositol hexaphosphate KW - drillable bone cement KW - tibial head depression fracture KW - synbones KW - artificial bones KW - biomechanical evaluation KW - cyclic testing KW - load to failure testing Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-236633 SN - 1996-1944 VL - 14 IS - 8 ER - TY - JOUR A1 - Jordan, Martin C. A1 - Bröer, David A1 - Fischer, Christian A1 - Heilig, Philipp A1 - Gilbert, Fabian A1 - Hölscher-Doht, Stefanie A1 - Kalogirou, Charis A1 - Popp, Kevin A1 - Grunz, Jan-Peter A1 - Huflage, Henner A1 - Jakubietz, Rafael G. A1 - Ergün, Süleyman A1 - Meffert, Rainer H. T1 - Development and preclinical evaluation of a cable-clamp fixation device for a disrupted pubic symphysis JF - Communications Medicine N2 - Background Traumatic separation of the pubic symphysis can destabilize the pelvis and require surgical fixation to reduce symphyseal gapping. The traditional approach involves open reduction and the implantation of a steel symphyseal plate (SP) on the pubic bone to hold the reposition. Despite its widespread use, SP-fixation is often associated with implant failure caused by screw loosening or breakage. Methods To address the need for a more reliable surgical intervention, we developed and tested two titanium cable-clamp implants. The cable served as tensioning device while the clamp secured the cable to the bone. The first implant design included a steel cable anterior to the pubic symphysis to simplify its placement outside the pelvis, and the second design included a cable encircling the pubic symphysis to stabilize the anterior pelvic ring. Using highly reproducible synthetic bone models and a limited number of cadaver specimens, we performed a comprehensive biomechanical study of implant stability and evaluated surgical feasibility. Results We were able to demonstrate that the cable-clamp implants provide stability equivalent to that of a traditional SP-fixation but without the same risks of implant failure. We also provide detailed ex vivo evaluations of the safety and feasibility of a trans-obturator surgical approach required for those kind of fixation. Conclusion We propose that the developed cable-clamp fixation devices may be of clinical value in treating pubic symphysis separation. KW - pubic symphysis KW - cable-clamp implants KW - SP-fixation Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-299800 VL - 2 IS - 1 ER - TY - JOUR A1 - Fuchs, Konrad F. A1 - Heilig, Philipp A1 - McDonogh, Miriam A1 - Boelch, Sebastian A1 - Gbureck, Uwe A1 - Meffert, Rainer H. A1 - Hoelscher-Doht, Stefanie A1 - Jordan, Martin C. T1 - Cement-augmented screw fixation for calcaneal fracture treatment: a biomechanical study comparing two injectable bone substitutes JF - Journal of Orthopaedic Surgery and Research N2 - Background The role of cement-augmented screw fixation for calcaneal fracture treatment remains unclear. Therefore, this study was performed to biomechanically analyze screw osteosynthesis by reinforcement with either a calcium phosphate (CP)-based or polymethylmethacrylate (PMMA)-based injectable bone cement. Methods A calcaneal fracture (Sanders type IIA) including a central cancellous bone defect was generated in 27 synthetic bones, and the specimens were assigned to 3 groups. The first group was fixed with four screws (3.5 mm and 6.5 mm), the second group with screws and CP-based cement (Graftys (R) QuickSet; Graftys, Aix-en-Provence, France), and the third group with screws and PMMA-based cement (Traumacem (TM) V+; DePuy Synthes, Warsaw, IN, USA). Biomechanical testing was conducted to analyze peak-to-peak displacement, total displacement, and stiffness in following a standardized protocol. Results The peak-to-peak displacement under a 200-N load was not significantly different among the groups; however, peak-to-peak displacement under a 600- and 1000-N load as well as total displacement exhibited better stability in PMMA-augmented screw osteosynthesis compared to screw fixation without augmentation. The stiffness of the construct was increased by both CP- and PMMA-based cements. Conclusion Addition of an injectable bone cement to screw osteosynthesis is able to increase fixation strength in a biomechanical calcaneal fracture model with synthetic bones. In such cases, PMMA-based cements are more effective than CP-based cements because of their inherently higher compressive strength. However, whether this high strength is required in the clinical setting for early weight-bearing remains controversial, and the non-degradable properties of PMMA might cause difficulties during subsequent interventions in younger patients. KW - arthritis KW - bone KW - calcaneus KW - cement KW - fracture KW - fixation KW - osteoporosis KW - sanders KW - screw Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-230336 VL - 15 ER - TY - THES A1 - Heilig, Philipp T1 - Biomechanische Evaluation neuartiger Knochenersatzmaterialien zur Therapie der Tibiakopfimpressionsfraktur T1 - Biomechanical evaluation of new bone substitutes for the therapy of tibial head depression fractures N2 - Tibiakopfimpressionsfrakturen (AO 41-B2.2 – Schatzker III), welche aufgrund der demographischen Entwicklung in ihrer klinischen Relevanz zunehmen, erfordern zur bestmöglichen Frakturstabilisierung eine Schraubenosteosynthese sowie eine stabile metaphysäre Defektauffüllung mittels Knochenersatzmaterial, da anderenfalls ein sekundärer Repositionsverlust mit konsekutiver Gonarthrose droht. Die hierbei eingesetzten Kalziumphosphatzemente bringen klinische Probleme wie geringe mechanische Stabilität, fehlende Bohrbarkeit, welche eine unvollständige Defektauffüllung bedingt, ungewisse Resorption und unüberprüfte Herstellerangaben mit sich. Diese Studie hatte daher zum Ziel, einen bohrbaren Kalziumphosphatzement und einen Magnesiumphosphatzement, welche als vielversprechende Alternativen aufgrund der klinischen Schwierigkeiten erscheinen, gegen Graftys® Quickset und ChronOS™ Inject biomechanisch einzuordnen und somit langfristig zu einer verbesserten Frakturversorgung beizutragen. Der erste Teil der Studie bestand aus einer reinen Materialprüfung, in der mittels Zementquader Druckversuche und mittels Ausrisskörper Zugversuche durchgeführt wurden. Im zweiten Teil wurde ein Frakturmodell für Impressionsfrakturen an Kunstknochen benutzt, um die Zemente hierbei zur Defektauffüllung zu verwenden und alleine sowie in Kombination mit einer Osteosynthese in der Jail-Technik zu testen. Es erfolgte eine zyklische Belastung mit 3000 Zyklen zu je 250 N sowie anschließend eine Maximalkrafttestung (Load-To-Failure) mit Hilfe einer Materialprüfmaschine. Der Magnesiumphosphatzement zeigte die signifikant höchste Kompressionsfestigkeit von 100,50 MPa ± 15,97 MPa und Ausrisskraft sowie im Verbund mit Knochen das geringste Displacement, höchste Maximalkraft und Steifigkeit. Kalziumphosphat bohrbar wies aufgrund seines pseudoplastischen Verhaltens eine geringe biomechanische Stabilität und ein hohes Displacement auf, konnte aber durch seine Bohrbarkeit gegenüber Graftys® Quickset bei Einsatz mit Schrauben einen Vorteil im Displacement erreichen und somit die Vorzüge eines bohrbaren Knochenzements aufzeigen. ChronOS™ zeigte nach Aushärtung im Wasserbad mit einer Kompressionsfestigkeit von 0,58 MPa ± 0,14 MPa eine niedrige biomechanische Stabilität und wurde daher nicht weiter untersucht. Da die Viskosität eines Zements neben anderen Faktoren für die Interdigitation mit den Spongiosahohlräumen im Knochen verantwortlich ist, lässt sich, sofern diese angemessen ist, Rückschlüsse von der Materialprüfung auf das Verhalten im Knochen ziehen. Magnesiumphosphatzemente erscheinen aufgrund ihrer hohen biomechanischen Stabilität und vermutlich guten Resorptionsrate als vielversprechende Alternative zu herkömmlichen Kalziumphosphatzementen und bedürfen daher einer weiteren Überprüfung im Tierversuch. N2 - Bone substitutes are commonly used for filling up bone defects like in tibial head fractures. Different types of commercial bone substitutes are available, but comparable biomechanical studies especially analysing the substitute-bone interaction are missing. Thus, this study investigated the basic biomechanical characteristics of different bone substitutes, the bonesubstitute interface and the combination of substitute and screw osteosynthesis in a biomechanical fracture model for tibial head fractures (Schatzker III fractures). An in-house developed drillable apatite cement with HEMA-Hydrogel and an in-house developed magnesium phosphate cement were compared with two commercial cements, one brushite and one apatite cement, namely ChronOS™ Inject and Graftys® Quickset. In axial compression tests, the compressive strength and in screw pull-out tests, the pull-out strength were determined. In a tibial head fracture model, the bone substitutes were applied for filling up the bone defect, alone and in combination with a screw osteosynthesis. Displacement of the fracture fragment, maximum load and stiffness were calculated in cyclic and maximal axial loading tests. All tests were performed in the material testing machine Zwick Roell® Z020. The drillable apatite cement exhibited lower compressive strength (6.8±1.4 MPa) and screw pullout force (129±38 N) compared to its counterpart Graftys® (19.0±2.5 MPa, 295±39 N), but showed comparable displacement (~2 mm) and maximum load (3.5-3.8 kN) in the fracture model combined with the Jail-Technique. This may be due to the fact that the drillable cement allowed for drilling after replenishment and thus precise dispersion of the cement paste. The magnesium phosphate cement revealed a significant higher compressive strength (100.5±16.0 MPa), screw pull-out strength (1.7±0.2 kN) and a significant lower displacement (~1.5 mm) compared to the other bone substitutes. Probably due to its high intrinsic strength combined with a low viscosity to fill the complete defect. For the combination with screws, all bone substitutes revealed higher maximum loads and stiffness values. In conclusion, magnesium phosphate cement provided a high biomechanical stability in the pure material testing series and also in the substitute-bone interaction tests. Due to a low viscosity, the cement revealed a high integration in the spongiosa and a complete filling up of the bone defect around the placed screws. Moreover, a drillable bone substitute is favourable as the dispersion of the cement paste is not hindered by formerly placed screws. For tibial head fractures, only the combination of bone substitute and screw osteosynthesis provides under lower and maximal loading conditions an adequate stability. KW - Knochenzement KW - Knochenersatzmaterial KW - Bohrbarkeit KW - Tibiakopfbruch KW - Osteosynthese KW - bone substitute KW - drillable KW - struvite KW - tibial fracture KW - calcium phosphate cement KW - Tibiakopfimpressionsfraktur KW - Knochenzement KW - Magnesium Phosphat Zement KW - Kalzium Phosphat Zement KW - bohrbares Knochenersatzmaterial Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-171037 ER -