TY - THES A1 - Zube, Christina T1 - Neuronal representation and processing of chemosensory communication signals in the ant brain N2 - Ants heavily rely on olfaction for communication and orientation and ant societies are characterized by caste- and sex-specific division of labor. Olfaction plays a key role in mediating caste-specific behaviours. I investigated whether caste- and sex-specific differences in odor driven behavior are reflected in specific differences and/or adaptations in the ant olfactory system. In particular, I asked the question whether in the carpenter ant, Camponotus floridanus, the olfactory pathway exhibits structural and/or functional adaptations to processing of pheromonal and general odors. To analyze neuroanatomical specializations, the central olfactory pathway in the brain of large (major) workers, small (minor) workers, virgin queens, and males of the carpenter ant C. floridanus was investigated using fluorescent tracing, immunocytochemistry, confocal microscopy and 3D-analyzes. For physiological analyzes of processing of pheromonal and non-pheromonal odors in the first odor processing neuropil , the antennal lobe (AL), calcium imaging of olfactory projection neurons (PNs) was applied. Although different in total glomerular volumes, the numbers of olfactory glomeruli in the ALs were similar across the female worker caste and in virgin queens. Here the AL contains up to ~460 olfactory glomeruli organized in 7 distinct clusters innervated via 7 antennal sensory tracts. The AL is divided into two hemispheres regarding innervations of glomeruli by PNs with axons leaving via a dual output pathway. This pathway consists of the medial (m) and lateral (l) antenno-cerebral tract (ACT) and connects the AL with the higher integration areas in the mushroom bodies (MB) and the lateral horn (LH). M- and l-ACT PNs differ in their target areas in the MB calyx and the LH. Three additional ACTs (mediolateral - ml) project to the lateral protocerebrum only. Males had ~45% fewer glomeruli compared to females and one of the seven sensory tracts was absent. Despite a substantially smaller number of glomeruli, males possess a dual PN output pathway to the MBs. In contrast to females, however, only a small number of glomeruli were innervated by projection neurons of the m-ACT. Whereas all glomeruli in males were densely innervated by serotonergic processes, glomeruli innervated by sensory tract six lacked serotonergic innervations in the female castes. It appears that differences in general glomerular organization are subtle among the female castes, but sex-specific differences in the number, connectivity and neuromodulatory innervations of glomeruli are substantial and likely to promote differences in olfactory behavior. Calcium imaging experiments to monitor pheromonal and non-pheromonal processing in the ant AL revealed that odor responses were reproducible and comparable across individuals. Calcium responses to both odor groups were very sensitive (10-11 dilution), and patterns from both groups were partly overlapping indicating that processing of both odor classes is not spatially segregated within the AL. Intensity response patterns to the pheromone components tested (trail pheromone: nerolic acid; alarm pheromone: n-undecane), in most cases, remained invariant over a wide range of intensities (7-8 log units), whereas patterns in response to general odors (heptanal, octanol) varied across intensities. Durations of calcium responses to stimulation with the trail pheromone component nerolic acid increased with increasing odor concentration indicating that odor quality is maintained by a stable pattern (concentration invariance) and intensity is mainly encoded in the response durations of calcium activities. For n-undecane and both general odors increasing response dynamics were only monitored in very few cases. In summary, this is the first detailed structure-function analyses within the ant’s central olfactory system. The results contribute to a better understanding of important aspects of odor processing and olfactory adaptations in an insect’s central olfactory system. Furthermore, this study serves as an excellent basis for future anatomical and/or physiological experiments. N2 - Für Ameisen spielt die olfaktorische Kommunikation und Orientierung eine zentrale Rolle hinsichtlich der Organisation des Ameisenstaates. Ob sich kasten- und geschlechtsspezifische Verhaltensunterschiede auf neuronaler Ebene und besonders im olfaktorischen System der Ameise widerspiegeln ist die zentrale Frage meiner Arbeit. Im Speziellen stellte ich die Frage, ob sich in der olfaktorischen Bahn der Rossameise Camponotus floridanus strukturelle oder funktionelle Anpassungen an die Verarbeitung von Pheromonen und generellen Düften aufzeigen lassen. Zur Analyse hinsichtlich neuroanatomischer Spezialisierungen wurde die olfaktorische Bahn im Gehirn von großen und kleinen Arbeiterinnen, Jungköniginnen und Männchen der Rossameise C. floridanus mittels Fluoreszenzmassenfärbungen, Immunzytochemie, konfokaler Laserscanningmikroskopie und 3D-Auswertung untersucht. Um die Verarbeitung von Pheromonen und generellen Düften im primären olfaktorischen Neuropil, dem Antennallobus (AL), auf physiologischer Ebene zu charakterisieren wurden olfaktorische Projektionsneurone mittels Calcium Imaging untersucht. Obwohl sich das glomeruläre Gesamtvolumen der ALs zwischen Arbeiterinnenkasten und Jungköniginnen unterscheidet, lag die Gesamtzahl der Glomeruli im AL in einem ähnlichen Bereich. Der AL besteht in allen drei weiblichen Kasten aus bis zu 460 Glomeruli, die in sieben Clustern angeordnet sind und von sieben sensorischen Eingangstrakten innerviert werden. Der AL unterteilt sich in zwei Hemispheren, deren entsprechende Glomeruli von Projektionsneuronen innverviert werden, die vom AL über die Nervenbahn des “dual output pathway” in höhere Hirnregionen projizieren. Diese Nervenbahn besteht aus dem medialen (m) und lateralen (l) Antennocerebraltrakt (ACT) und verbindet den AL mit höheren Integrationszentren wie den Pilzkörpern (MB) und dem lateralen Horn (LH). M- und l-ACT unterscheiden sich in ihren Zielregionen im MB Calyx und dem LH. Drei weitere ACTs (mediolateral – ml) projizieren ausschließlich ins laterale Protocerebrum. Männchen besitzen ca. 45% weniger Glomeruli im Vergleich zur Weibchenkaste. Ihnen fehlt weiterhin einer der sieben sensorischen Eingangstrakte vollständig. Trotz der wesentlich geringeren Anzahl an Glomeruli, besitzen auch Männchen den “dual output pathway”. Im Gegensatz zu den Weibchen ist allerdings nur eine geringe Anzahl an Glomeruli durch m-ACT Projektionsneurone innerviert. Ein weiterer Unterschied im AL von Männchen und Weibchen findet sich in den Glomeruli des sensorische Trakts Nummer sechs, die bei Weibchen keinerlei serotonerge Innervierung aufweisen während beim Männchen der gesamte AL dichte serotonerge Verzweigungen besitzt. Es zeigt sich somit, dass die kastenspezifischen Unterschiede in der allgmeinen glomerulären Organisation des AL innerhalb der Weibchenkaste nur sehr fein sind. Im Gegensatz dazu sind die geschlechtsspezifischen Unterschiede in Anzahl, Konnektivität und neuromodulatorischer Innervierung von Glomeruli zwischen Weibchen- und Männchen wesentlich ausgeprägter was Unterschiede in olfaktorisch geprägten Verhaltensweisen begünstigen könnte. Die Calcium Imaging Experimente zur Untersuchung der Verarbeitung von Pheromonen und generellen Düften im AL der Ameise zeigten, dass Duftantworten reproduzierbar und zwischen Individuen vergleichbar waren. Die Sensitivität des Calcium Signals lag für beide Duftgruppen in einem sehr niedrigen Bereich (Verdünnung 10-11). Die Antortmuster beider Duftgruppen überlappten zum Teil, was die Annahme zuläßt, dass die Verarbeitung von Pheromonen und generellen Düften keiner räumlichen Trennung innerhalb des AL unterliegt. Die Intensität der Antwortmuster auf die Pheromonkomponenten (Spurpheromon: Nerolsäure; Alarmpheromon: n-Undecan) blieben in den meisten Fällen über einen weiten Konzentrationsbereich konstant (7-8 log Einheiten). Die Dauer der Calciumantwort nach Stimulation mit Nerolsäure verlängerte sich mit steigender Duftkonzentration. Dies läßt für das Spurpheromon den Schluß zu, dass die Duftqualität in einem konstanten Duftmuster (Konzentrationsinvarianz) repräsentiert und die Duftintensität über die Dauer des Calciumsignals abgebildet wird. Da die Antwortmuster auf generelle Düfte (Heptanal, Octanol) dagegen sehr viel stärker innerhalb des getesteten Konzentrationsbereichs varrieren ließ sich für n-Undecan und die beiden generellen Düfte eine solche Dynamik nur in einigen wenigen Fällen beobachtet. Zusammenfassend ist diese Studie die erste strukturelle und funktionelle Studie des olfaktorischen Systems der Ameise. Die Ergebnisse tragen zu einem besseren Verständnis der neuronalen Adaptationen und Mechanismen hinsichtlich Duftverarbeitung im zentralen Nervensystem von Insekten bei. Außerdem liefert diese Studie eine wichtige Grundlage für zukünftige neuroanatomische und –physiologische Untersuchungen auf dem Gebiet der Neurobiologie der Insekten. KW - Gehirn KW - Neuroethologie KW - Neuroanatomie KW - Geruchswahrnehmung KW - Neuronale Plastizität KW - Insekten KW - Antennallobus KW - Glomeruli KW - olfaktorische Bahn KW - Camponotus floridanus KW - Dufverarbeitung KW - antennal lobe KW - glomeruli KW - olfactory pathway KW - Campontous floridanus KW - odor processing Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-30383 ER - TY - THES A1 - Drechsler, Patrick Hans T1 - Mechanics of adhesion and friction in stick insects and tree frogs T1 - Mechanik der Adhäsion und Reibung von Stabheuschrecken und Baumfröschen N2 - Many arthropods and vertebrates can cling to surfaces using adhesive pads on their legs. These pads are either smooth and characterised by a specialised, soft cuticle or they are hairy, i.e. densely covered with flexible adhesive setae. Animals climbing with adhesive organs are able to control attachment and detachment dynamically while running. The detailed mechanisms of how tarsal pads generate adhesive and frictional forces and how forces are controlled during locomotion are still largely unclear. The aim of this study was to clarify the attachment mechanism of smooth adhesive pads as present in many insects and tree frogs. To understand the function of these fluid-based adhesive systems, I characterized their performance under standardized conditions. To this end, experiments were conducted by simultaneously measuring adhesion, friction, and contact area in single adhesive pads. The first result of this study showed that friction in stick insect attachment pads is anisotropic: Attachment pads regularly detached when slid away from the body. Further analyses of "immobilized" arolia revealed that this anisotropy is not caused by an increased shear stress in the proximal direction, but by the instability of the tarsus when pushed distally. In the second part of this study, I analysed the role of the pad secretion present in insects and tree frogs. In stick insects, shear stress was largely independent of normal force and increased with velocity, seemingly consistent with the viscosity effect of a continuous fluid film. However, measurements of the remaining force two minutes after a sliding movement showed that adhesive pads could sustain considerable static friction in insects and tree frogs. Repeated sliding movements and multiple consecutive pull-offs of stick insect single legs to deplete adhesive secretion showed that on a smooth surface, friction and adhesion strongly increased with decreasing amount of fluid in insects. In contrast, stick insect pull-off forces significantly decreased on a rough substrate. Thus, the secretion does not generally increase attachment but does so only on rough substrates, where it helps to maximize contact area. When slides with stick insect arolia were repeated at one position so that secretion could accumulate, sliding shear stress decreased but static friction remained clearly present. This suggests that static friction in stick insects, which is biologically important to prevent sliding, is based on non-Newtonian properties of the adhesive emulsion rather than on a direct contact between the cuticle and the substrate. % Analogous measurements in toe pads of tree frogs showed that they are also able to generate static friction, even though their pads are wetted by mucus. In contrast to the mechanism proposed for insects, static friction in tree frogs apparently results from the very close contact of toe pads to the substrate and boundary lubrication. In the last section of this study, I investigated adhesive forces and the mode of detachment by performing pull-off measurements at different velocities and preloads. These experiments showed that preload has only an increasing effect on adhesion for faster pull-offs. This can be explained by the viscoelastic material properties of the stick insect arolium, which introduce a strong rate-dependence of detachment. During fast pull-offs, forces can spread over the complete area of contact, leading to forces scaling with area. In contrast, the pad material has sufficient time to withdraw elastically and peel during slow detachments. Under these conditions the adhesive force will concentrate on the circumference of the contact area, therefore scaling with a length, supporting models such as the peeling theory. The scaling of single-pad forces supported these conclusions, but large variation between pads of different stick insects did not allow statistically significant conclusions. In contrast, when detachment forces were quantified for whole insects using a centrifuge, forces scaled with pad contact area and not with length. N2 - Viele Arthropoden und Vertebraten können sich mit Hilfe tarsaler Haftorgane an Oberflächen festhalten. Diese Organe sind entweder glatt, mit einer spezialisierten, weichen Cuticula oder haarig, d.h. dicht besetzt mit mikroskopisch kleinen, biegsamen Hafthaaren. Mit Haftorganen kletternde Tiere können während des Laufens Haftkräfte dynamisch kontrollieren. Die genaueren Mechanismen, mit denen Adhäsions- und Reibungskräfte erzeugt werden und mit denen die Kräfte während des Laufens schnell kontrolliert werden können, sind allerdings noch immer weitgehend unklar. Das Ziel dieser Arbeit war es, den Haftmechanismus von glatten Haftorganen bei Insekten und Baumfröschen näher aufzuklären. Um die Funktion dieser flüssigkeitsbasierten Haftsysteme zu verstehen, charakterisierte ich ihr Adhäsions- und Reibungsverhalten unter standardisierten Bedingungen. Dazu führte ich Experimente an einzelnen Haftorganen durch, bei denen ich gleichzeitig Adhäsion, Reibung, und Kontaktfläche erfasste. Das erste Ergebnis dieser Arbeit war, dass die Reibung von Insektenhaftorganen von der Bewegungsrichtung abhängt. Ein Haftorgan, das vom Körper weg bewegt wird (distale Richtung), löst sich meist von der Oberfläche ab. Weitere Untersuchungen an Haftorganen bei fixiertem Tarsus zeigten, dass die Richtungsabhängigkeit nicht durch eine erhöhte Scherspannung in der proximalen Richtung hervorgerufen wird, sondern durch die Instabilität des Tarsus, wenn der Fuß vom Körper weg bewegt wird. Im zweiten Teil der Arbeit untersuchte ich die Rolle des Haftsekrets bei Stabheuschrecken und Baumfröschen. Bei Stabheuschrecken war die Scherspannung unabhängig von der Normalkraft und nahm mit der Bewegungsgeschwindigkeit zu, scheinbar in Einklang mit der viskosen Reibung eines durchgehenden Flüssigkeitsfilms. Jedoch ergaben Scherspannungsmessungen bei Stabheuschrecken und Fröschen selbst zwei Minuten nach einer Gleitbewegung ein beträchtliches Maß an statischer "Rest"-Reibung. Um den Einfluss geringer werdender Haftflüssigkeit zu untersuchen, wurden wiederholte Gleitversuche sowie aufeinanderfolgende Ablöseversuche auf glatten Oberflächen durchgeführt. Diese Experimente zeigten, dass sowohl die Reibungs- als auch die Adhäsionskraft mit abnehmender Flüssigkeitsmenge anstieg. Im Gegensatz hierzu nahm die Adhäsionskraft auf rauen Oberflächen mit abnehmender Haftflüssigkeitsmenge ab. Demzufolge führte die Haftflüssigkeit nur auf rauen Oberflächen zu einer Vergrößerung der Kontaktfläche und zu einer Erhöhung der Adhäsionskraft. Reibungskräfte auf glatten Oberflächen wurden bei Stabheuschrecken umso geringer, je häufiger Reibungsversuche an ein und der selben Stelle durchgeführt wurden (um die Menge an Haftflüssigkeit zu erhöhen). Dennoch blieb immer eine statische Reibung vorhanden. Das Vorhandensein von statischer Reibung ist biologisch wichtig um das unfreiwillige Ausrutschen zu verhindern. Meine Ergebnisse weisen darauf hin, dass die Haftreibung bei Insekten nicht auf direkte Kontakte zwischen Cuticula und Untergrund zurückzuführen ist, sondern auf die (scherverdünnende) nicht-Newtonschen Eigenschaften des zweiphasigen Haftsekrets. Analoge Messungen an Haftzehen von Baumfröschen zeigten, dass auch diese statische Reibungskräfte erzeugen können, obwohl sie von einem flüssigen Schleim benetzt sind. Im Gegensatz zu dem bei Insekten gefundenen Mechanismus, entsteht bei Fröschen die statische Reibung wahrscheinlich durch Trockenreibung und den sehr nahen Kontakt zur Oberfläche. Im letzten Teil dieser Arbeit untersuchte ich Adhäsionskräfte und den Ablösevorgang durch Haftkraftmessungen bei verschiedenen Geschwindigkeiten und Normalkräften. Diese Experimente zeigten, dass die Normalkraft nur bei schnellem Ablösen zu höheren Adhäsionskräften führt. Dies ist durch die viskoelastischen Materialeigenschaften der Stabheuschrecken-Arolien erklärbar, die zu einer starken Geschwindigkeitsabhängigkeit des Ablösevorgangs führen. Bei schnellem Ablösen breiten sich die Kräfte über die gesamte Kontaktzone aus, was zu einer Flächenskalierung der Adhäsion führt. Im Gegensatz dazu hat das Haftorgan bei einem langsamen Ablöseprozess genügend Zeit, sich elastisch zurückzuziehen und abzuschälen. Unter diesen Bedingungen konzentriert sich die Kraft am Rand der Kontaktzone, wodurch die Adhäsionskräfte mit einer Länge skalieren, wie z.B. von der "peeling" Theorie vorhergesagt. Die Skalierung von Einzelbein-Haftkräften bestätigte diese Schlußfolgerungen, aber die starke Variation zwischen verschiedenen Stabheuschrecken erlaubte es nicht, diese statistisch abzusichern. Im Gegensatz dazu zeigten die Haftkräfte ganzer Insekten, welche mit Hilfe einer Zentrifuge gemessen wurden, eine deutliche Flächenskalierung. KW - Biomechanik KW - Adhäsion KW - Flüssigkeitsreibung KW - Reibung KW - Frosch KW - Insekten KW - Carausius morosus KW - Haftung KW - Schubspannung KW - Emulsion KW - Schälen KW - Haftmechanismen KW - Haftorgane KW - Haftflüssigkeit KW - Litoria caerulea KW - Scherspannung KW - Wet adhesion model KW - biomechanics KW - adhesion KW - friction KW - attachment structure KW - adhesive fluid KW - wet adhesion KW - shear stress KW - emulsion KW - attachment devices KW - peeling Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-26836 ER -