TY - JOUR A1 - Kramer, Susanne T1 - Simultaneous detection of mRNA transcription and decay intermediates by dual colour single mRNA FISH on subcellular resolution JF - Nucleic Acids Research N2 - The detection of mRNAs undergoing transcription or decay is challenging, because both processes are fast. However, the relative proportion of an mRNA in synthesis or decay increases with mRNA size and decreases with mRNA half-life. Based on this rationale, I have exploited a 22 200 nucleotide-long, short-lived endogenous mRNA as a reporter for mRNA metabolism in trypanosomes. The extreme 5΄ and 3΄ ends were labeled with red- and green-fluorescent Affymetrix® single mRNA FISH probes, respectively. In the resulting fluorescence images, yellow spots represent intact mRNAs; red spots are mRNAs in transcription or 3΄-5΄ decay, and green spots are mRNAs in 5΄-3΄ degradation. Most red spots were nuclear and insensitive to transcriptional inhibition and thus likely transcription intermediates. Most green spots were cytoplasmic, confirming that the majority of cytoplasmic decay in trypanosomes is 5΄-3΄. The system showed the expected changes at inhibition of transcription or translation and RNAi depletion of the trypanosome homologue to the 5΄-3΄ exoribonuclease Xrn1. The method allows to monitor changes in mRNA metabolism both on cellular and on population/tissue wide levels, but also to study the subcellular localization of mRNA transcription and decay pathways. I show that the system is applicable to mammalian cells. KW - mRNA Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148002 ER - TY - JOUR A1 - Kramer, Susanne A1 - Piper, Sophie A1 - Estevez, Antonio A1 - Carrington, Mark T1 - Polycistronic trypanosome mRNAs are a target for the exosome JF - Molecular and Biochemical Parasitology N2 - Eukaryotic cells have several mRNA quality control checkpoints to avoid the production of aberrant proteins. Intron-containing mRNAs are actively degraded by the nuclear exosome, prevented from nuclear exit and, if these systems fail, degraded by the cytoplasmic NMD machinery. Trypanosomes have only two introns. However, they process mRNA5 from long polycistronic precursors by trans-splicing and polycistronic mRNA molecules frequently arise from any missed splice site. Here, we show that RNAi depletion of the trypanosome exosome, but not of the cytoplasmic 5'-3' exoribonuclease XRNA or the NMD helicase UPF1, causes accumulation of oligocistronic mRNA5. We have also revisited the localization of the trypanosome exosome by expressing eYFP-fusion proteins of the exosome subunits RRP44 and RRP6. Both proteins are significantly enriched in the nucleus. Together with published data, our data suggest a major nuclear function of the trypanosome exosome in rRNA, snoRNA and mRNA quality control. KW - Trypanosoma brucei KW - Exosome KW - NMD KW - Polycistronic mRNA KW - trans-splicing KW - Trypanosomes Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-191350 VL - 205 IS - 1-2 ER -