TY - JOUR A1 - Shityakov, Sergey A1 - Skorb, Ekaterina V. A1 - Förster, Carola Y. A1 - Dandekar, Thomas T1 - Scaffold Searching of FDA and EMA-Approved Drugs Identifies Lead Candidates for Drug Repurposing in Alzheimer’s Disease JF - Frontiers in Chemistry N2 - Clinical trials of novel therapeutics for Alzheimer’s Disease (AD) have consumed a significant amount of time and resources with largely negative results. Repurposing drugs already approved by the Food and Drug Administration (FDA), European Medicines Agency (EMA), or Worldwide for another indication is a more rapid and less expensive option. Therefore, we apply the scaffold searching approach based on known amyloid-beta (Aβ) inhibitor tramiprosate to screen the DrugCentral database (n = 4,642) of clinically tested drugs. As a result, menadione bisulfite and camphotamide substances with protrombogenic and neurostimulation/cardioprotection effects were identified as promising Aβ inhibitors with an improved binding affinity (ΔGbind) and blood-brain barrier permeation (logBB). Finally, the data was also confirmed by molecular dynamics simulations using implicit solvation, in particular as Molecular Mechanics Generalized Born Surface Area (MM-GBSA) model. Overall, the proposed in silico pipeline can be implemented through the early stage rational drug design to nominate some lead candidates for AD, which will be further validated in vitro and in vivo, and, finally, in a clinical trial. KW - scaffold search KW - approved drugs KW - drug repurposing KW - alzheimer's disease KW - chemical similarity KW - molecular modeling Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-248703 SN - 2296-2646 VL - 9 ER - TY - JOUR A1 - Gupta, Shishir K. A1 - Srivastava, Mugdha A1 - Osmanoglu, Özge A1 - Xu, Zhuofei A1 - Brakhage, Axel A. A1 - Dandekar, Thomas T1 - Aspergillus fumigatus versus genus Aspergillus: conservation, adaptive evolution and specific virulence genes JF - Microorganisms N2 - Aspergillus is an important fungal genus containing economically important species, as well as pathogenic species of animals and plants. Using eighteen fungal species of the genus Aspergillus, we conducted a comprehensive investigation of conserved genes and their evolution. This also allows us to investigate the selection pressure driving the adaptive evolution in the pathogenic species A. fumigatus. Among single-copy orthologs (SCOs) for A. fumigatus and the closely related species A. fischeri, we identified 122 versus 50 positively selected genes (PSGs), respectively. Moreover, twenty conserved genes of unknown function were established to be positively selected and thus important for adaption. A. fumigatus PSGs interacting with human host proteins show over-representation of adaptive, symbiosis-related, immunomodulatory and virulence-related pathways, such as the TGF-β pathway, insulin receptor signaling, IL1 pathway and interfering with phagosomal GTPase signaling. Additionally, among the virulence factor coding genes, secretory and membrane protein-coding genes in multi-copy gene families, 212 genes underwent positive selection and also suggest increased adaptation, such as fungal immune evasion mechanisms (aspf2), siderophore biosynthesis (sidD), fumarylalanine production (sidE), stress tolerance (atfA) and thermotolerance (sodA). These genes presumably contribute to host adaptation strategies. Genes for the biosynthesis of gliotoxin are shared among all the close relatives of A. fumigatus as an ancient defense mechanism. Positive selection plays a crucial role in the adaptive evolution of A. fumigatus. The genome-wide profile of PSGs provides valuable targets for further research on the mechanisms of immune evasion, antimycotic targeting and understanding fundamental virulence processes. KW - molecular evolution KW - phylogenetic analysis KW - adaptation KW - recombination KW - positive selection KW - human pathogenic fungi KW - genus Aspergillus KW - Aspergillus fumigatus Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-246318 SN - 2076-2607 VL - 9 IS - 10 ER - TY - JOUR A1 - Alnusaire, Taghreed S. A1 - Sayed, Ahmed M. A1 - Elmaidomy, Abeer H. A1 - Al-Sanea, Mohammad M. A1 - Albogami, Sarah A1 - Albqmi, Mha A1 - Alowaiesh, Bassam F. A1 - Mostafa, Ehab M. A1 - Musa, Arafa A1 - Youssif, Khayrya A. A1 - Refaat, Hesham A1 - Othman, Eman M. A1 - Dandekar, Thomas A1 - Alaaeldin, Eman A1 - Ghoneim, Mohammed M. A1 - Abdelmohsen, Usama Ramadan T1 - An in vitro and in silico study of the enhanced antiproliferative and pro-oxidant potential of Olea europaea L. cv. Arbosana leaf extract via elastic nanovesicles (spanlastics) JF - Antioxidants N2 - The olive tree is a venerable Mediterranean plant and often used in traditional medicine. The main aim of the present study was to evaluate the effect of Olea europaea L. cv. Arbosana leaf extract (OLE) and its encapsulation within a spanlastic dosage form on the improvement of its pro-oxidant and antiproliferative activity against HepG-2, MCF-7, and Caco-2 human cancer cell lines. The LC-HRESIMS-assisted metabolomic profile of OLE putatively annotated 20 major metabolites and showed considerable in vitro antiproliferative activity against HepG-2, MCF-7, and Caco-2 cell lines with IC\(_{50}\) values of 9.2 ± 0.8, 7.1 ± 0.9, and 6.5 ± 0.7 µg/mL, respectively. The encapsulation of OLE within a (spanlastic) nanocarrier system, using a spraying method and Span 40 and Tween 80 (4:1 molar ratio), was successfully carried out (size 41 ± 2.4 nm, zeta potential 13.6 ± 2.5, and EE 61.43 ± 2.03%). OLE showed enhanced thermal stability, and an improved in vitro antiproliferative effect against HepG-2, MCF-7, and Caco-2 (IC\(_{50}\) 3.6 ± 0.2, 2.3 ± 0.1, and 1.8 ± 0.1 µg/mL, respectively) in comparison to the unprocessed extract. Both preparations were found to exhibit pro-oxidant potential inside the cancer cells, through the potential inhibitory activity of OLE against glutathione reductase and superoxide dismutase (IC\(_{50}\) 1.18 ± 0.12 and 2.33 ± 0.19 µg/mL, respectively). These inhibitory activities were proposed via a comprehensive in silico study to be linked to the presence of certain compounds in OLE. Consequently, we assume that formulating such a herbal extract within a suitable nanocarrier would be a promising improvement of its therapeutic potential. KW - olive KW - metabolomic profiling KW - antiproliferative KW - pro-oxidant KW - encapsulation KW - spanlastic KW - nanocarrier KW - docking KW - molecular dynamics simulation KW - Olea Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-250064 SN - 2076-3921 VL - 10 IS - 12 ER - TY - RPRT A1 - Dandekar, Thomas T1 - A new cosmology of a crystallization process (decoherence) from the surrounding quantum soup provides heuristics to unify general relativity and quantum physics by solid state physics T1 - Eine neue Kosmologie eines Kristallisationsprozesses (Dekohärenz) vom umgebenden Quantenschaum bietet Heuristiken, um allgemeine Relativitätstheorie und Quantenphysik durch Festkörperphysik zu vereinen N2 - We explore a cosmology where the Big Bang singularity is replaced by a condensation event of interacting strings. We study the transition from an uncontrolled, chaotic soup (“before”) to a clearly interacting “real world”. Cosmological inflation scenarios do not fit current observations and are avoided. Instead, long-range interactions inside this crystallization event limit growth and crystal symmetries ensure the same laws of nature and basic symmetries over our domain. Tiny mis-arrangements present nuclei of superclusters and galaxies and crystal structure leads to the arrangement of dark (halo regions) and normal matter (galaxy nuclei) so convenient for galaxy formation. Crystals come and go, allowing an evolutionary cosmology where entropic forces from the quantum soup “outside” of the crystal try to dissolve it. These would correspond to dark energy and leads to a big rip scenario in 70 Gy. Preference of crystals with optimal growth and most condensation nuclei for the next generation of crystals may select for multiple self-organizing processes within the crystal, explaining “fine-tuning” of the local “laws of nature” (the symmetry relations formed within the crystal, its “unit cell”) to be particular favorable for self-organizing processes including life or even conscious observers in our universe. Independent of cosmology, a crystallization event may explain quantum-decoherence in general: The fact, that in our macroscopic everyday world we only see one reality. This contrasts strongly with the quantum world where you have coherence, a superposition of all quantum states. We suggest that a “real world” (so our everyday macroscopic world) happens only in our domain, i.e. inside a crystal. “Outside” of our domain and our observable universe there is the quantum soup of boiling quantum foam and superposition of all possibilities. In our crystallized world the vacuum no longer boils but is cooled down by the crystallization event and hence is 10**20 smaller, exactly as observed in our everyday world. As we live in a “solid” state, within a crystal, the different quanta which build our world have all their different states nicely separated. This theory postulates there are only n quanta and m states available for them (there is no Everett-like ever splitting multiverse after each decision). In the solid state we live in, there is decoherence, the states are nicely separated. The arrow of entropy for each edge of the crystal forms one fate, one worldline or clear development of a world, while the layers of the crystal are different system states. Some mathematical leads from loop quantum gravity point to required interactions and potentials. A complete mathematical treatment of this unified theory is far too demanding currently. Interaction potentials for strings or membranes of any dimension allow a solid state of quanta, so allowing decoherence in our observed world are challenging to calculate. However, if we introduce here the heuristic that any type of physical interaction of strings corresponds just to a type of calculation, there is already since 1898 the Hurwitz theorem showing that then only 1D, 2D, 4D and 8D (octonions) allow complex or hypercomplex number calculations. No other hypercomplex numbers and hence dimensions or symmetries are possible to allow calculations without yielding divisions by zero. However, the richest solution allowed by the Hurwitz theorem, octonions, is actually the observed symmetry of our universe, E8.   KW - Kosmologie KW - cosmology KW - Hurwitz-Theorem KW - Quantenschleifen-Gravitation KW - Verschränkung KW - Qubits KW - Hurwitz-Theorem KW - loop quantum gravity KW - entanglement KW - Qubits Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-230769 ER - TY - JOUR A1 - Kühnemundt, Johanna A1 - Leifeld, Heidi A1 - Scherg, Florian A1 - Schmitt, Matthias A1 - Nelke, Lena C. A1 - Schmitt, Tina A1 - Bauer, Florentin A1 - Göttlich, Claudia A1 - Fuchs, Maximilian A1 - Kunz, Meik A1 - Peindl, Matthias A1 - Brähler, Caroline A1 - Kronenthaler, Corinna A1 - Wischhusen, Jörg A1 - Prelog, Martina A1 - Walles, Heike A1 - Dandekar, Thomas A1 - Dandekar, Gudrun A1 - Nietzer, Sarah L. T1 - Modular micro-physiological human tumor/tissue models based on decellularized tissue for improved preclinical testing JF - ALTEX N2 - High attrition-rates entailed by drug testing in 2D cell culture and animal models stress the need for improved modeling of human tumor tissues. In previous studies our 3D models on a decellularized tissue matrix have shown better predictivity and higher chemoresistance. A single porcine intestine yields material for 150 3D models of breast, lung, colorectal cancer (CRC) or leukemia. The uniquely preserved structure of the basement membrane enables physiological anchorage of endothelial cells and epithelial-derived carcinoma cells. The matrix provides different niches for cell growth: on top as monolayer, in crypts as aggregates and within deeper layers. Dynamic culture in bioreactors enhances cell growth. Comparing gene expression between 2D and 3D cultures, we observed changes related to proliferation, apoptosis and stemness. For drug target predictions, we utilize tumor-specific sequencing data in our in silico model finding an additive effect of metformin and gefitinib treatment for lung cancer in silico, validated in vitro. To analyze mode-of-action, immune therapies such as trispecific T-cell engagers in leukemia, as well as toxicity on non-cancer cells, the model can be modularly enriched with human endothelial cells (hECs), immune cells and fibroblasts. Upon addition of hECs, transmigration of immune cells through the endothelial barrier can be investigated. In an allogenic CRC model we observe a lower basic apoptosis rate after applying PBMCs in 3D compared to 2D, which offers new options to mirror antigen-specific immunotherapies in vitro. In conclusion, we present modular human 3D tumor models with tissue-like features for preclinical testing to reduce animal experiments. KW - modular tumor tissue models KW - invasiveness KW - bioreactor culture KW - combinatorial drug predictions KW - immunotherapies Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-231465 VL - 38 ER - TY - JOUR A1 - Scherer, Marc A1 - Fleishman, Sarel J. A1 - Jones, Patrik R. A1 - Dandekar, Thomas A1 - Bencurova, Elena T1 - Computational Enzyme Engineering Pipelines for Optimized Production of Renewable Chemicals JF - Frontiers in Bioengineering and Biotechnology N2 - To enable a sustainable supply of chemicals, novel biotechnological solutions are required that replace the reliance on fossil resources. One potential solution is to utilize tailored biosynthetic modules for the metabolic conversion of CO2 or organic waste to chemicals and fuel by microorganisms. Currently, it is challenging to commercialize biotechnological processes for renewable chemical biomanufacturing because of a lack of highly active and specific biocatalysts. As experimental methods to engineer biocatalysts are time- and cost-intensive, it is important to establish efficient and reliable computational tools that can speed up the identification or optimization of selective, highly active, and stable enzyme variants for utilization in the biotechnological industry. Here, we review and suggest combinations of effective state-of-the-art software and online tools available for computational enzyme engineering pipelines to optimize metabolic pathways for the biosynthesis of renewable chemicals. Using examples relevant for biotechnology, we explain the underlying principles of enzyme engineering and design and illuminate future directions for automated optimization of biocatalysts for the assembly of synthetic metabolic pathways. KW - computational KW - enzyme KW - engineering KW - design KW - biomanufacturing KW - biofuel KW - microbes KW - metabolism Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-240598 SN - 2296-4185 VL - 9 ER - TY - JOUR A1 - Osmanoglu, Özge A1 - Khaled AlSeiari, Mariam A1 - AlKhoori, Hasa Abduljaleel A1 - Shams, Shabana A1 - Bencurova, Elena A1 - Dandekar, Thomas A1 - Naseem, Muhammad T1 - Topological Analysis of the Carbon-Concentrating CETCH Cycle and a Photorespiratory Bypass Reveals Boosted CO\(_2\)-Sequestration by Plants JF - Frontiers in Bioengineering and Biotechnology N2 - Synthetically designed alternative photorespiratory pathways increase the biomass of tobacco and rice plants. Likewise, some in planta–tested synthetic carbon-concentrating cycles (CCCs) hold promise to increase plant biomass while diminishing atmospheric carbon dioxide burden. Taking these individual contributions into account, we hypothesize that the integration of bypasses and CCCs will further increase plant productivity. To test this in silico, we reconstructed a metabolic model by integrating photorespiration and photosynthesis with the synthetically designed alternative pathway 3 (AP3) enzymes and transporters. We calculated fluxes of the native plant system and those of AP3 combined with the inhibition of the glycolate/glycerate transporter by using the YANAsquare package. The activity values corresponding to each enzyme in photosynthesis, photorespiration, and for synthetically designed alternative pathways were estimated. Next, we modeled the effect of the crotonyl-CoA/ethylmalonyl-CoA/hydroxybutyryl-CoA cycle (CETCH), which is a set of natural and synthetically designed enzymes that fix CO₂ manifold more than the native Calvin–Benson–Bassham (CBB) cycle. We compared estimated fluxes across various pathways in the native model and under an introduced CETCH cycle. Moreover, we combined CETCH and AP3-w/plgg1RNAi, and calculated the fluxes. We anticipate higher carbon dioxide–harvesting potential in plants with an AP3 bypass and CETCH–AP3 combination. We discuss the in vivo implementation of these strategies for the improvement of C3 plants and in natural high carbon harvesters. KW - CO2-sequestration KW - photorespiration KW - elementary modes KW - synthetic pathways KW - carboxylation KW - metabolic modeling KW - CETCH cycle Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-249260 SN - 2296-4185 VL - 9 ER -