TY - JOUR A1 - Schroer, Guido A1 - Toussaint, Valérie A1 - Bachmann, Stephanie A1 - Pöppler, Ann‐Christin A1 - Gierlich, Christian Henning A1 - Delidovich, Irina T1 - Functional Phenylboronate Polymers for the Recovery of Diols, Sugar Alcohols, and Saccharides from Aqueous Solution JF - ChemSusChem N2 - The ongoing transition from fossil to renewable feedstocks demands new efficient processes for an economically viable production of biomass‐derived commodities and fine chemicals. Novel energy‐ and material‐efficient product purification and separation will play a crucial role due to altered product and feed composition. The present study comprises the synthesis and tests of cross‐linked p‐vinylphenylboronate polymers for the separation of 18 diols, sugar alcohols, and saccharides, which can be obtained during biomass processing. The separation was based on molecular recognition, that is, esterification of the phenylboronate with vicinal diols. A correlation of the molecular complexation constant, the polymer swelling, and the maximum adsorption capacity was found. The adsorption curves over time were recorded. Preliminary results on competitive adsorption of binary mixtures showed a high potential for the separation of substrates with significantly different complexation constants. Desorption tests implied easier desorption of substrates that only adsorb on the outer polymer shell. KW - adsorption KW - biomass KW - phenylboronate KW - polymers KW - separation techniques Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-239889 VL - 14 IS - 23 SP - 5207 EP - 5215 ER - TY - JOUR A1 - Pöppler, Ann-Christin A1 - Lübtow, Michael M. A1 - Schlauersbach, Jonas A1 - Wiest, Johannes A1 - Meinel, Lorenz A1 - Luxenhofer, Robert T1 - Loading dependent Structural Model of Polymeric Micelles Encapsulating Curcumin by Solid-State NMR Spectroscopy JF - Angewandte Chemie International Edition N2 - Detailed insight into the internal structure of drug‐loaded polymeric micelles is scarce, but important for developing optimized delivery systems. We observed that an increase in the curcumin loading of triblock copolymers based on poly(2‐oxazolines) and poly(2‐oxazines) results in poorer dissolution properties. Using solid‐state NMR spectroscopy and complementary tools we propose a loading‐dependent structural model on the molecular level that provides an explanation for these pronounced differences. Changes in the chemical shifts and cross‐peaks in 2D NMR experiments give evidence for the involvement of the hydrophobic polymer block in the curcumin coordination at low loadings, while at higher loadings an increase in the interaction with the hydrophilic polymer blocks is observed. The involvement of the hydrophilic compartment may be critical for ultrahigh‐loaded polymer micelles and can help to rationalize specific polymer modifications to improve the performance of similar drug delivery systems. KW - dissolution rates KW - micelles KW - polymers KW - short-range order KW - solid-state NMR spectroscopy Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-206705 VL - 58 IS - 51 ER -