TY - THES A1 - Godbole, Amod Anand T1 - A new paradigm in GPCR signaling at the trans-Golgi network of thyroid cells T1 - Ein neues Model der GPCR Signaltransduktion am trans-Golgi-Netzwerk von Schilddrüsenzellen N2 - Whereas G-protein coupled receptors (GPCRs) have been long believed to signal through cyclic AMP exclusively at cell surface, our group has previously shown that GPCRs not only signal at the cell surface but can also continue doing so once internalized together with their ligands, leading to persistent cAMP production. This phenomenon, which we originally described for the thyroid stimulating hormone receptor (TSHR) in thyroid cells, has been observed also for other GPCRs. However, the intracellular compartment(s) responsible for such persistent signaling and its consequences on downstream effectors were insufficiently characterized. The aim of this study was to follow by live-cell imaging the trafficking of internalized TSHRs and other involved signaling proteins as well as to understand the consequences of signaling by internalized TSHRs on the downstream activation of protein kinase A (PKA). cAMP and PKA activity was measured in real-time in living thyroid cells using FRET-based sensors Epac1-camp and AKAR2 respectively. The results suggest that TSH co-internalizes with its receptor and that the internalized TSH/TSHR complexes traffic retrogradely to the trans-Golgi network (TGN). This study also provides evidence that these internalized TSH/TSHR complexes meet an intracellular pool of Gs proteins in sorting endosomes and in TGN and activate it there, as visualized in real-time using a conformational biosensor nanobody, Nb37. Acute Brefeldin A-induced Golgi collapse hinders the retrograde trafficking of TSH/TSHR complexes, leading to reduced cAMP production and PKA signaling. BFA pretreatment was also able to attenuate CREB phosphorylation suggesting that an intact Golgi/TGN organisation is essential for an efficient cAMP/PKA signaling by internalized TSH/TSHR complexes. Taken together this data provides evidence that internalized TSH/TSHR complexes meet and activate Gs proteins in sorting endosomes and at the TGN, leading to a local activation of PKA and consequently increased CREB activation. These findings suggest unexpected functions for receptor internalization, with major pathophysiological and pharmacological implications. N2 - G-Protein-gekoppelte Rezeptoren sind nur in Eukaryonten vorhandeln und bilden die größte und diverseste Familie von Zellmembranrezeptoren. Sie reagieren auf eine vielfältige Gruppe von Stimuli die verschiedene Effektoren aktivieren und damit nachgelagerte Signalkaskaden auslösen, die letztlich entscheidend für die Zellphysiologie sind. Die Regelung der Ligand-vermittelten Signaltransduktion wird hauptsächlich durch die Desensibilisierung des GPCR mittels Dephosphorylierung (katalysiert durch GRK) und zusätzlich durch Internalisierung des GPCR gesteuert. Die Annahme, dass GPCRs für cAMP nur an der Zellmembran signalisieren und nicht mehr sobald sie in die Zelle internalisiert wurden, konnte durch wegweisende unabhängige Forschung an GPCRs im Besonderen an TSHR und PTHR geändert werden. So konnte gezeigt werden, dass sie für cAMP nicht nur an der Zellmembran signalisieren, sondern auch, wenn sie in intrazelluläre Zellkompartimente internalisiert wurde. Dieses Phänomen („sustained signaling“ hier „anhaltende Signalisierung“) wurde seitdem für andere GPCRs (z.B. 2-AR, V2R und LHR) beschrieben. Aber die Zellkompartimente wurden für nachhaltige intrazelluläre Signale nicht ausreichend charakterisiert. Das Ziel dieser Arbeit war es die Bewegung und die dynamische Natur der möglichen signalisierenden Kompartimente mittels „real-time TIRF“-Mikroskopie und die Signalisierung unter Verwendung von „real-time FRET“ in primären Maus Schilddrüsenzellen zu untersuchen. Die vorliegende Arbeit berichtet, dass TSH/TSHR Komplexe internalisieren und ein signifikanter Teil, welcher vom Retromer Komplex angeführt wird, gelangt über den retrograden (rückwärts gerichteten) Transport in das trans-Golgi-Netzwerk (TGN). Diese TSH/TSHR-Komplexe treffen nicht in den frühen Endosomen auf die Gs-Proteine, sondern in den „Sortierer Endosomen“ und in dem TGN. Ein direkter Beweis für Gs Protein Aktivierung und Signaltransduktion am TGN und in Sortierer Endosomen konnte mittels des nanobody Nb37, einem spezifischen Biosensor für das aktive Gs Protein, erbracht werden. Es konnte gezeigt werden, dass die Sequestrierung von Nb37 an diesen Kompartimenten ein szintillierendes Verhalten in Zeit und Raum zeigt. Die vorliegende Arbeit zeigt, dass die katalytische Untereinheit der PKA am Golgi/TGN angereichert ist. Die Behandlung mit Brefeldin A führt zum Verlust dieser PKA Lokalisation am Golgi. Die Beschädigung und Reorganisation des TGN durch Brefeldin A führt zu a) einer abgeschwächten cAMP Reaktion b) einer dreiphasigen PKA Reaktion charakterisiert durch eine schnelle erste Phase, eine langsame (deutlich abgeschwächte) zweite Phase und eine verzögerte dritte Phase und schließlich c) einer abgeschwächte CREB Phosphorylierung. Es gibt Anzeichen dafür, dass die Reorganisation des TGN Kompartimente betrifft, die verantwortlich für intrazelluläre cAMP- und PKA-Signalisierung sind. Zusammenfassend lässt sich sagen, dass das TGN eines der Kompartimente ist, das für die anhaltende TSHR-Signalisierung verantwortlich ist. KW - G-Protein gekoppelte Rezeptoren KW - GPCR KW - thyroid stimulating hormone receptor KW - trans-Golgi network KW - Signaltransduktion KW - Golgi-Apparat KW - Schilddrüse Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-147159 ER - TY - THES A1 - Nekhoroshkova, Elena T1 - A-RAF kinase functions in ARF6 regulated endocytic membrane traffic T1 - Die Rolle der A-RAF-Kinase in ARF6 reguliertem endocytotischem Membrantransport N2 - Extracellular signals are translated and amplified via cascades of serially switched protein kinases, MAP kinases (MAPKs). One of the MAP pathways, the classical RAS/RAF/MEK/ERK pathway, transduces signals from receptor tyrosine kinases and plays a central role in regulation of cell proliferation. RAF kinases (A-, B- and C-RAF) function atop of this cascade and convert signals emanating from conformational change of RAS GTPases into their kinase activity, which in turn phosphorylates their immediate substrate, MEK. Disregulated kinase activity of RAF can result in tumor formation, as documented for many types of cancer, predominantly melanomas and thyroid carcinomas (B-RAF). A-RAF is the least characterized RAF, possibly due to its low intrinsic kinase activity and comparatively mild phenotype of A-RAF knockout mice. Nevertheless, the unique phenotype of araf -/- mice, showed predominantly neurological abnormalities such as cerebellum disorders, suggesting that A-RAF participates in a specific process not complemented by activities of B- and CRAF. Here we describe the role of A-RAF in membrane trafficking and identify its function in a specific step of endocytosis. This work led to the discovery of a C-terminally truncated version of A-RAF, AR149 that strongly interfered with cell growth and polarization in yeast and with endocytosis and actin polymerization in mammalian cells. As this work was in progress two splicing isoforms of ARAF, termed DA-RAF1 and DA-RAF2 were described that act as natural inhibitors of RAS-ERK signaling during myogenic differentiation (Yokoyama et al., 2007). DA-RAF2 contains the first 153 aa of A-RAF and thus is nearly identical with AR149. AR149 localized specifically to the recycling endosomal compartments as confirmed by colocalization and coimmunoprecipitation with ARF6. Expression of AR149 interferes with recycling of endocytosed transferrin (Tfn) and with actin polymerization. The endocytic compartment, where internalized Tfn is trapped, was identified as ARF6- and RAB11- positive endocytic vesicles. We conclude that the inhibition of Tfn trafficking in the absence of A-RAF or under overexpression of AR149 occurs between tubular- and TGNassociated recycling endosomal compartments. siRNA-mediated depletion of endogenous A-RAF or inhibition of MEK by U0126 mimic the AR149 overexpression phenotype, supporting a role of ARAF regulated ERK signalling at endosomes that is controlled by AR149 and targets ARF6. Our data additionally suggest EFA6 as a partner of A-RAF during activation of ARF6. The novel findings on the A-RAF localization and the interaction with ARF6 have led to a new model of ARAF function were A-RAF via activation of ARF6 controls the recycling of endocytic vesicles.Endocytosis and rapid recycling of synaptic vesicles is critically important for the physiological function of neurons. The finding, that A-RAF regulates endocytic recycling open a new perspective for investigation of the role of A-RAF in the nervous system. N2 - Extrazelluläre Signale werden über eine Serie von nacheinander geschalteten Proteinkinasen, den MAP-Kinasen (MAPK) weitergeleitet und multipliziert. Einer der MAPK-Signalwege, der RAS/RAF/MEK/ERK-Signaltransduktionsweg, leitet Signale von Tyrosinkinaserezeptoren weiter und spielt eine zentralle Role in der Regulation der Zellproliferation. RAF Kinasen (A-, B-, und CRAF) stehen am Anfang der Kaskade. Sie wandeln die signalbedingte strukturellen Änderungen der RAS-GTPase in ihre Kinaseaktivität um und phosphorylieren ihr direktes Substrat, MEK. Eine Störung in der Regulation der Kinaseaktivität des RAF-Proteins kann zur Tumorbildung führen, wie es bei vielen Krebsarten, vor allem Melanom und Schilddrüsenkarzinom (B-RAF), dokumentiert ist. A-RAF ist die bislang am wenigsten charakterisierte RAF-Kinase, möglicherweise aufgrund sihrer nidrigen intrinsischen Kinaseaktivität. Weiterhin weist die A-RAF defficiente Maus einen relativ milden hauptsächlich neuronalen Phänotyp auf, der sich unter anderem auch in einer Fehlfunktion des Cerebellums manifestiert. Dieser einzigartige Phänotyp weist darauf hin, dass eine Reihe zellulärer Prozesse spezifisch durch A-RAF und nicht durch aktiveren B- und C-RAF vermittellt wird. Im Rahmen dieser Doktorarbeit wurde die Rolle des A-RAF-Proteins im intrazellulären Membrantransport analysiert und eine spezifische A-RAF Funktion by endozytotischen Prozessen identifiziert. Diese Arbeit führte zur Entdeckung einer C-terminal verkürtzten Form von A-RAF, AR149, welche das Wachstum und die Polarisation von Hefezellen beeinträchtigt. In Säugetierzellen wirkt AR149 störend auf die Endozytose und die Aktinpolymerisation. Während des Entstehungsprozesses dieser Studie, wurden parallel zwei Spleißisoformen des A-RAF-Proteins, DARAF1 und 2, publiziert, die als natürliche Inhibitoren des RAS-RAF-MEK-ERK-Signalwegs in der myogenen Differenzierung agieren (Yokoyama et al., 2007). DA-RAF2 beinhaltet die ersten 153 Aminosäuren des A-RAF Proteines und ist damit fast identisch mit AR149. Eigene Kolokalisierungund Koimmunopräzipitationsexperimente mit ARF6 weisen darauf hin, dass AR149 spezifisch in ARF6-positiven Recycling-Endosomen lokalisiert ist. Expression des AR149 Proteins bechindert das Recycling von endozytiertem Transferrin und die Aktin Polimerisation. Die endosomalen Kompartimente in denen internalisiertes Transferrin gefangen vor liegt, konntenals ARF6- und RAB11-positive endozytotische Vesikeln characterisiert werden. Diese Ergebnisse lassen auf eine durch A-RAF Überexpression bzw. durch die Abwesenheit an A-RAF vermittelte Blokade des intrazellulären Transferrintransportes zwischen den tubulären- und Trans-Golgi-Netzwerk-assoziirten endosomalen Recycling-Kompartimenten schließen. Inhibierung der endogenen A-RAF-Expression durch siRNA oder Hemmung der MEK-Aktivität durch U0126 haben den selben Effekt wie AR149. Auf der Basis dieser Ergebnisse wird ein neues Modell für die Rolle der A-RAF regulierten ERK Signallwirkung auf Endosomen vorgestellt, bei dem das Zielprotein die ARF6 GTPase durch 3 AR149/DA-RAF2 negativ reguliert wird. Daruber hinaus deuten unsere Daten darauf hin, dass EFA6, ein GEF-Faktor von ARF6, als Kooperationspartner von A-RAF bei der ARF6-Aktivierung fungiert. Endocytose und das schnelle Recycling von synaptischen Vesikeln ist von besonderer Bedeutung für die Funktion von Neuronen. Aus dem Befund, dass A-RAF ein Regulator des endocytotischen Recyclings ist ergibt sich dacher eine neue Perspektieve für die Untersuchung der A-RAF Funktion im Nervensystem. KW - Raf-Kinasen KW - Endocytose KW - Onkologie KW - Signaltransduktion KW - Carcinogenese KW - ARF6 GTPase KW - Recycling- Endosomen KW - ERK KW - A-RAF KW - Signal-Übertragung KW - A-RAF KW - signal transduction KW - mitogen cascade KW - membrane trafficking KW - endocytic recycling Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-44566 ER - TY - THES A1 - Dinev, Dragomir T1 - Analysis of the role of extracellular signal regulated kinase (ERK5) in the differentiation of muscle cells T1 - Analyse der Rolle der extrazellulären signalregulierten Kinase (ERK5) in der Differenzierung von Muskelzellen N2 - The MEK5/ ERK5 kinase module is a relatively new discovered mitogen-activated protein kinase (MAPK) signalling pathway with a poorly defined physiological function. Since ERK5 and its upstream activator MEK5 are abundant in skeletal muscle a function of the cascade during muscle differentiation was examined. ERK5 becomes activated upon induction of differentiation in mouse myoblasts. The selective activation of the pathway results in promoter activation of differentiation-specific genes, such as the cdk-inhibitor p21 gene, the myosin light chain (MLC1A) gene, or an E-box containing promoter element, where myogenic basic-helix-loop-helix proteins such as MyoD or myogenin bind. Moreover, myogenic differentiation is completely blocked, when ERK5 expression is inhibited by antisense RNA. The effect can be detected also on the expression level of myogenic determination and differentiation markers such as p21, MyoD and myogenin. Another new finding is that stable expression of ERK5 in C2C12 leads to differentiation like phenotype and to increased p21 expression levels under growth conditions. These results provide first evidence that the MEK5/ERK5 MAP kinase cascade is critical for early steps of muscle cell differentiation. N2 - MEK5/ ERK5 ist ein erst kürzlich entdeckter MAPK- Signalweg, dessen physiologische Funktion noch wenig verstanden ist. Da ERK5 und der in der Kaskade oberhalb liegende Aktivator MEK5 in Skelettmuskeln hoch expremiert werden, wurde eine Funktion der Kaskade während des Muskel-Differenzierung untersucht. ERK5 wird nach einer Induktion der Differenzierung in Maus-Myoblasten aktiviert. Die gezielte Aktivierung dieses Signalwegs führt zur Induzierung von Promotoren differenzierungs-spezifischer Gene, wie z.B. des cdk-Inhibitors p21, der MLC1A, oder eines Promotors, der E-Boxen enthält, woran myogene Basische-Helix- loop- Helix Proteine, wie MyoD oder Myogenin binden können. Darüber hinaus ist die Muskeldifferenzierung völlig blockiert, wenn die Expression von ERK5 mittels antisense-RNA inhibiert wird. Diesen Effekt kann man auch an hand der Menge von exprimierten muskelspezifischen Differenzierungsproteinen, wie p21, MyoD und Myogenin nachweisen. Eine weitere neue Entdeckung ist, daß stabile Expression von ERK5 in C2C12 Zellen zu einem differenzierungsähnlichen Phänotyp und gesteigerter p21 Expression unter Wachstum-bedingungen führt. Diese Ergebnisse geben erste Anhaltspunkte, daß der MEK5/ ERK5 MAP Kinase Signalweg entscheidend für frühe Stadien der Muskeldifferenzierung ist. KW - Muskelzelle KW - Zelldifferenzierung KW - Signaltransduktion KW - Proteinkinasen KW - ERK5 KW - MEK5 KW - MEF2C KW - MyoD KW - Muskeldifferenzierung KW - Kinase KW - ERK5 KW - MEK5 KW - MEF2C KW - MyoD KW - muscle differentiation KW - kinase Y1 - 2001 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-1180481 ER - TY - THES A1 - Peterson, Lisa T1 - CEACAM3-mediated phagocytosis of human-specific bacterial pathogens involves the adaptor molecule Nck N2 - Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) are exploited by human-specific pathogens to anchor themselves to or invade host cells. Interestingly, human granulocytes express a specific isoform, CEACAM3, that can direct efficient, opsonin-independent phagocytosis of CEACAM-binding Neisseria, Moraxella and Haemophilus species. As opsonin-independent phagocytosis of CEACAM-binding Neisseria depends on Src-family protein tyrosine kinase (PTK) phosphorylation of the CEACAM3 cytoplasmic domain, we hypothesized that an SH2-containing protein might be involved in CEACAM3-initiated, phagocytosis-promoting signals. Accordingly, we screened glutathione-S-transferase (GST) fusion proteins containing SH2 domains derived from a panel of signaling and adapter molecules for their ability to associate with CEACAM3. In vitro pull-down assays demonstrated that the SH2 domain of the adapter molecule Nck (GST-Nck SH2), but not other SH2 domains such as the Grb2 SH2 domain, interact with CEACAM3 in a phosphotyrosine-dependent manner. Either deletion of the cytoplasmic tail of CEACAM3, or point-mutation of a critical arginine residue in the SH2 domain of Nck (GST-NckSH2R308K) that disrupts phosphotyrosine binding, both abolished CEACAM3-Nck-SH2 interaction. Upon infection of human cells with CEACAM-binding Neisseria, full-length Nck comprising an SH2 and three SH3 domains co-localized with tyrosine phosphorylated CEACAM3 and associated bacteria as analyzed by immunofluorescence staining and confocal microscopy. In addition, Nck could be detected in CEACAM3 immunoprecipitates confirming the interaction in vivo. Importantly, overexpression of a GFP-fusion protein of the isolated Nck SH2 domain (GFP-Nck-SH2), but not GFP or GFP-Nck SH2 R308K reduced CEACAM3-mediated phagocytosis of CEACAM-binding Neisseria suggesting that the adaptor molecule Nck plays an important role in CEACAM3-initiated signaling leading to internalization and elimination of human-specific pathogens. KW - Adaptorproteine KW - Signaltransduktion KW - Phagozytose KW - Neisseria gonorrhoeae KW - Carcino-embryonales Antigen KW - Angeborene Immunität KW - Src-Proteine KW - Nichtrezeptor-Tyrosinkinasen KW - CEACAM3 KW - Nck KW - ITAM KW - CEACAM3 KW - Nck KW - ITAM KW - gonococci KW - phagocytosis Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-46378 ER - TY - THES A1 - Böhme, Linda T1 - Cellular response to double-stranded RNA in Chlamydia trachomatis-infected human host cells T1 - Zelluläre Antwort auf doppelsträngige RNA in Chlamydia trachomatis-infizierten humanen Wirtszellen N2 - Chlamydien sind Gram-negative, obligat-intrazelluläre Bakterien, die für ein weites Spektrum an relevanten Krankheiten verantwortlich sind. Auf Grund ihres zweiphasigen Entwicklungszyklusses sind Chlamydien von einer intakten Wirtszelle abhängig, um sich erfolgreich vermehren und im Organismus ausbreiten zu können. Daher haben Chlamydien anspruchsvolle Strategien entwickelt, um das Immunsystem des Wirtes auszuschalten oder den programmierten Zelltod ihrer Wirtszelle zu verhindern. In der vorliegenden Arbeit wurde untersucht, ob eine Infektion mit C. trachomatis einen Einfluss auf die zelluläre Antwort auf dsRNA nehmen kann. Die Synthese von dsRNA ist ein charakteristisches Merkmal der Replikation von Viren, welche sowohl die Apoptose induzieren als auch das Immunsystem aktivieren kann. Um eine chlamydiale und virale Co-Infektion zu simulieren, wurden Chlamydien-infizierte Epithelzellen mit der synthetischen dsRNA Polyinosin-Polycytidinsäure (polyI:C) transfiziert. Im ersten Teil der Arbeit wurde untersucht, ob Chlamydien die durch dsRNA eingeleitete Apoptose verhindern können. Eine signifikante Reduktion der dsRNA-induzierten Apoptose konnte in infizierten Zellen beobachtet werden. Es zeigte sich, dass die Prozessierung der Initiator-Caspase-8 in infizierten Zellen unterblieb. Dies war von der frühen bakteriellen Proteinsynthese abhängig und für die dsRNA-vermittelte Apoptose spezifisch, da der durch TNFalpha bewirkte Zelltod nicht auf der Ebene der Caspase-8 verhindert werden konnte. Die Aktivierung von zellulären Faktoren, die bei der Apoptoseinduzierung eine wichtige Rolle spielen, beispielsweise PKR und RNase L, war in infizierten Zellen jedoch unverändert. Stattdessen konnte durch RNA Interferenz-vermittelte Depletion gezeigt werden, dass der zelluläre Caspase-8-Inhibitor cFlip eine entscheidende Rolle bei der chlamydialen Blockierung der dsRNA-vermittelten Apoptose spielt. Mittels Co-Immunopräzipitation konnte ein erster Hinweis darauf gefunden werden, dass C. trachomatis eine Anreicherung von cFlip im dsRNA-induzierten Komplex von Caspase-8 und FADD bewirkt. Im zweiten Teil der Arbeit wurde untersucht, ob Chlamydien die Immunantwort auf virale Infektionen beeinflussen, welche vor allem die Expression von Interferonen und Interleukinen beinhaltet. Es stellte sich heraus, dass die Aktivierung des Interferon regulatory factor 3 (IRF-3) und des zur Familie von NF-kappaB Trankriptionsfaktoren gehörenden p65, zwei zentralen Regulatoren der Immunantwort auf dsRNA, in infizierten Epithelzellen verändert war. Die Degradation von IkappaB-alpha, des Inhibitors von NF-kappaB, war in infizierten Zellen beschleunigt, begleitet von einer Veränderung der Translokation des Transkriptionsfaktors in den Zellkern. Im Gegensatz dazu wurde die nukleäre Translokation von IRF-3 durch die Infektion signifikant verhindert. Die hier vorgestellten Daten zeigen erstmals, dass eine Infektion mit C. trachomatis die zelluläre Antwort auf dsRNA signifikant verändern kann und implizieren einen Einfluss von chlamydialen Infektionen auf den Ausgang von viralen Superinfektionen. N2 - Chlamydia are Gram-negative obligate intracellular bacteria responsible for a wide spectrum of relevant diseases. Due to their biphasic developmental cycle Chlamydia depend on an intact host cell for replication and establishment of an acute infection. Chlamydia have therefore evolved sophisticated strategies to inhibit programmed cell death (PCD) induced by a variety of stimuli and to subvert the host immune system. This work aimed at elucidating whether an infection with C. trachomatis can influence the cellular response to double-stranded RNA (dsRNA). The synthesis of dsRNA is a prominent feature of viral replication inside infected cells that can induce both PCD and the activation of a cellular innate immune response. In order to mimic chlamydial and viral co-infections, Chlamydia-infected cells were transfected with polyinosinic:polycytidylic acid (polyI:C), a synthetic dsRNA. In the first part of this work it was investigated whether C. trachomatis-infected host cells could resist apoptosis induced by polyI:C. A significant reduction in apoptosis, determined by PARP cleavage and DNA fragmentation, could be observed in infected cells. It could be shown that processing of the initiator caspase-8 was inhibited in infected host cells. This process was dependent on early bacterial protein synthesis and was specific for dsRNA because apoptosis induced by TNFalpha was not blocked at the level of caspase-8. Interestingly, the activation of cellular factors involved in apoptosis induction by dsRNA, most importantly PKR and RNase L, was not abrogated in infected cells. Instead, RNA interference experiments revealed the crucial role of cFlip, a cellular caspase-8 inhibitor, for chlamydial inhibition of dsRNA-induced apoptosis. First data acquired by co-immunoprecipitation experiments pointed to an infection-induced concentration of cFlip in the dsRNA-induced death complex of caspase-8 and FADD. In the second part of this work, the chlamydial influence on the first line of defense against viral infections, involving expression of interferons and interleukins, was examined. Activation of the interferon regulatory factor 3 (IRF-3) and the NF-kappaB transcription factor family member p65, both central regulators of the innate immune response to dsRNA, was altered in Chlamydia-infected epithelial cells. polyI:C-induced degradation of IkappaB-alpha, the inhibitor of NF-kappaB, was accelerated in infected cells which was accompanied by a change in nuclear translocation of the transcription factor. Translocation of IRF-3, in contrast, was significantly blocked upon infection. Together the data presented here demonstrate that infection with C. trachomatis can drastically alter the cellular response to dsRNA and imply an impact of chlamydial infections on the outcome of viral super-infections. KW - Chlamydia trachomatis KW - Signaltransduktion KW - Immunreaktion KW - Doppelhelix KW - RNS KW - Apoptosis KW - Apoptose KW - doppelsträngige RNA KW - Immunantwort KW - Apoptosis KW - Chlamydia trachomatis KW - double-stranded RNA KW - innate immunity KW - signal transduction Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-46474 ER - TY - THES A1 - Hart, Stefan T1 - Characterisation of the molecular mechanisms of EGFR signal transactivation in human cancer T1 - Charakterisierung der molekularen Mechanismen der EGFR-Transaktivierung in humanen Tumoren. N2 - In a variety of established tumour cell lines, but also in primary mammary epithelial cells metalloprotease-dependent transactivation of the EGFR, and EGFR characteristic downstream signalling events were observed in response to stimulation with physiological concentrations of GPCR agonists such as the mitogens LPA and S1P as well as therapeutically relevant concentrations of cannabinoids. Moreover, this study reveals ADAM17 and HB-EGF as the main effectors of this mechanism in most of the cancer cell lines investigated. However, depending on the cellular context and GPCR agonist, various different members of the ADAM family are selectively recruited for specific ectodomain shedding of proAR and/or proHB-EGF and subsequent EGFR activation. Furthermore, biological responses induced by LPA or S1P such as migration in breast cancer and HNSCC cells, depend on ADAM17 and proHB-EGF/proAR function, respectively, suggesting that highly abundant GPCR ligands may play a role in tumour development and progression. Moreover, EGFR signal transactivation could be identified as the mechanistic link between cannabinoid receptors and the activation of mitogen activated protein kinases (MAPK) ERK1/2 as well as pro-survival Akt/PKB signalling. Depending on the cellular context, cannabinoid-induced signal cross-communication was mediated by shedding of proAmphiregulin and/or proHB-EGF by ADAM17. Most importantly, our data show that concentrations of THC comparable to those detected in the serum of patients after THC administration accelerate proliferation of cancer cells instead of apoptosis and thereby may contribute to cancer progression in patients. N2 - Im Rahmen dieser Arbeit wurde gezeigt, dass in verschiedenen etablierten Tumorzelllinien, aber auch in primären Brustepithelzellen sowohl physiologische Konzentrationen von GPCR Liganden, wie z.B. den Mitogenen LPA und S1P, als auch therapeutische Konzentrationen von Cannabinoiden zur metalloproteaseabhängigen Aktivierung des EGFRs führen. Abhängig von diesem Mechanismus konnte die Aktivierung der mitogenen Ras/MAPK-Kaskade als auch des antiapoptotischen Akt/PKB Signalweges beobachtet werden. Untersuchungen mit Hilfe der siRNA-Technik oder dominant-negativen Konstrukten identifizierten ADAM17 sowie den EGFR-Liganden HB-EGF als wichtigste Komponenten dieses Signalweges. Abhängig vom Zellsystem konnte aber auch eine Beteiligung anderer Mitglieder der ADAM Familie sowie des EGFR-Liganden Amphiregulin nachgewiesen werden. Weiterhin konnte in dieser Arbeit gezeigt werden, dass die durch LPA und S1P induzierten biologische Prozesse, wie z.B. die Migration in Brustkrebs- oder HNSCC-Zellen, vollständig von der Aktivität von ADAM17 und HB-EGF/AR abhängig waren. Außerdem konnte die ADAM17- und HB-EGF/AR-vermittelte EGFR-Transaktivierung als Bindeglied zwischen Cannabinoid-Rezeptoren und MAPK- und Akt-Aktivierung sowie erhöhter Zellproliferation identifiziert werden. Die Ergebnisse dieser Arbeit unterstreichen die Rolle der EGFR Signaltransaktivierung und dadurch induzierter biologischer Antworten wie Zellmigration oder –proliferation in Tumorzellen, und sollten darüber hinaus zu einer Neubewertung der Krebstherapie mit Cannabinoiden führen. KW - Epidermaler Wachstumsfaktor-Rezeptor KW - Krebs KW - Signaltransduktion KW - EGFR KW - GPCR KW - Transaktivierung KW - Krebs KW - Metalloprotease KW - EGFR KW - GPCR KW - transactivation KW - cancer KW - metalloprotease Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-10067 ER - TY - THES A1 - Jiménez-Pearson, María-Antonieta T1 - Characterization of the mechanisms of two-component signal transduction involved in motility and chemotaxis of Helicobacter pylori T1 - Untersuchungen zur Zweikomponenten- Signaltransduktion bei der Motilität und Chemotaxis von Helicobacter pylori N2 - Flagellen-basierte Motilität und Chemotaxis stellen essentielle Pathogenitätsfaktoren dar, die für die erfolgreiche Kolonisierung der Magenschleimhaut durch H. pylori notwendig sind. Die Mechanismen der Regulation der Flagellensynthese und das Chemotaxis-System von H. pylori weisen trotz einiger Ähnlichkeiten fundamentale Unterschiede zu den Systemen anderer Bakterien auf. In H. pylori ist die Flagellensynthese durch eine komplex regulierte Kaskade kontrolliert, die Regulatorkomponenten wie das Zweikomponentensystem HP244/FlgR, die Sigma Faktoren 54 und 28 und den Sigma Faktor28-Antagonisten FlgM enthält. Das Signal, welches über die Histidinkinase des Zweikomponentensystems HP244/FlgR die Expression der Sigma Faktor54-abhängigen Klasse 2 Flagellengene reguliert, ist bisher noch nicht bekannt. Allerdings konnte mit HP137 ein Protein identifiziert werden, das im „yeast two-hybrid“ System sowohl mit der korrespondierenden Kinase HP244 des Flagellenregulators FlgR, als auch mit der Flagellenkomponente FlgE´ interagiert (Rain et al., 2001). In dieser Arbeit wurde eine mögliche Rolle von HP137 in einem Rückkopplungsmechanismus untersucht, welcher die Aktivität der Histidinkinase in der Flagellenregulation kontrollieren könnte. Obwohl die Deletion des ORF hp137 zu einer unbeweglichen Mutante führte, legen die erfolglosen Komplementations Experimente, sowie die Beobachtung, dass HP137 in vitro keinen bedeutenden Effekt auf die Aktivität der Histidinkinase HP244 hat nahe, dass HP137 weder in H. pylori noch im nahe verwandten C. jejuni direkt an der Flagellenregulation beteiligt ist. Das Chemotaxis-System von H. pylori unterscheidet sich vom gutuntersuchten Chemotaxis-System der Enterobakterien in einigen Aspekten. Zusätzlich zu dem CheY Response Regulator Protein (CheY1) besitzt H. pylori eine weitere CheY-artige Receiver-Domäne (CheY2) welche C-terminal an die Histidinkinase CheA fusioniert ist. Zusätzlich finden sich im Genom von H. pylori Gene, die für drei CheV Proteine kodieren die aus einer N-terminalen Domäne ähnlich CheW und einer C-terminalen Receiver Domäne bestehen, während man keine Orthologen zu den Genen cheB, cheR, and cheZ findet. Um einen Einblick in den Mechanismus zu erhalten, welcher die chemotaktische Reaktion von H. pylori kontrolliert, wurden Phosphotransferreaktionen zwischen den gereinigten Signalmodulen des Zweikomponentensystems in vitro untersucht. Durch in vitro-Phosphorylierungsexperimente wurde eine ATP-abhängige Autophosphorylierung der bifunktionellen Histidinkinase CheAY2 und von CheA´, welches ein verkürztes Derivat von ChAY2 ohne Receiver-Domäne darstellt, nachgewiesen. CheA´ zeigt eine für an der Chemotaxis beteiligte Histidinkinasen typische Phosphorylierungskinetik mit einer ausgeprägten exponentiellen Phase, während die Phosphorylierungskinetik von CheAY2 nur eine kurze exponentielle Phase aufweist, gefolgt von einer Phase in der die Hydrolyse von CheAY2~P überwiegt. Es wurde gezeigt, dass die Anwesenheit einer der CheY2 Domäne die Stabilität der phosphorylierten P1 Domäne im CheA Teil des bifunktionellen Proteins beeinflusst. Außerdem wurde gezeigt, dass sowohl CheY1 als auch CheY2 durch CheAY2 phosphoryliert werden und dass die drei CheV Proteine die Histidinkinase CheA´~P dephosphorylieren, wenn auch mit einer im Vergleich zu CheY1 und CheY2 geringeren Affinität. Außerdem ist CheA´ in der Lage seine Phosphatgruppen auf CheY1 aus C. jejuni und CheY aus E. coli zu übertragen. Retrophosphorylierungsexperimente weisen darauf hin, dass CheY1~P die Phosphatgruppe zurück auf die Histidinkinase CheAY2 übertragen kann und dass die CheY2-Domäne in dem bifunktionellen Protein CheAY2 als „Phosphat Sink“ agiert der den Phosphorylierungszustand und damit die Aktivität des frei diffundierbaren Proteins CheY1 reguliert, das vermutlich es mit dem Flagellenmotor interagiert. Es konnte weiterhin gezeigt werden, dass die unabhängige Funktion der beiden Domänen CheA´ und CheY2 für eine normale chemotaktische Signalgebung in vivo nicht ausreicht. In dieser Arbeit wurden also Hinweise auf eine komplexe Kaskade Phosphatübertragungsreaktionen im chemotaktischen System von H. pylori gefunden, welches Ähnlichkeiten zu dem Syteme-Chemotaxis von S. meliloti aufweist an denen multiple CheY Proteine beteiligt sind. Die Rolle der CheV Proteine bleibt im Moment unklar, jedoch könnte es sein, dass sie an einer weiteren Feinregulierung der Phosphatgruppenübertragungsreaktionen in diesem komplexen chemotaktischen System beteiligt sind N2 - Flagellar motility and chemotaxis are essential virulence traits required for the ability of Helicobacter pylori to colonize the gastric mucosa. The flagellar regulatory network and the complex chemotaxis system of H. pylori are fundamentally different from other bacteria, despite many similarities. In H. pylori expression of the flagella is controlled by a complex regulatory cascade involving the two-component system FlgR-HP244, the sigma factors 54 and 28 and the anti-sigma 28 factor FlgM. Thus far, the input signal for histidine kinase HP244, which activates the transcriptional regulator FlgR, which triggers sigma factor 54-dependent transcription of the flagellar class 2 genes, is not known. Based on a yeast two-hybrid screen a highly significant protein-protein interaction between the H. pylori protein HP137 and both the histidine kinase HP244 and the flagellar hook protein HP908 (FlgE´) has been reported recently (Rain et al., 2001). So far, no function could be assigned to HP137. Interestingly, the interaction between HP137 and histidine kinase HP244 was observed in the characteristic block N sequence motif of the C-terminal ATP-binding kinase domain. In this work a potential role of HP137 in a feedback regulatory mechanism controlling the activity of histidine kinase HP244 in the flagellar regulation of H. pylori was investigated. Although the substitution of the gene encoding HP137 by a kanamycin cassette resulted in non-motile bacteria, the failure to restore motility by the reintroduction of hp137 in cis into the mutant strain, and the observation that HP137 has no significant effect on the activity of histidine kinase HP244 in vitro indicated that HP137 is not directly involved in flagellar regulation. Therefore, it was demonstrated that HP137 does not participate in the regulation of flagellar gene expression, neither in H. pylori nor in the closely related bacterium C. jejuni. Chemotactic signal transduction in H. pylori differs from the enterobacterial paradigm in several respects. In addition to a CheY response regulator protein (CheY1) H. pylori contains a CheY-like receiver domain (CheY2) which is C-terminally fused to the histidine kinase CheA. Furthermore, the genome of H. pylori encodes three CheV proteins consisting of an N-terminal CheW-like domain and a C-terminal receiver domain, while there are no orthologues of the chemotaxis genes cheB, cheR, and cheZ. To obtain insight into the mechanism controlling the chemotactic response of H. pylori the phosphotransfer reactions between the purified two-component signalling modules were investigated in vitro. Using in vitro phosphorylation assays it was shown that both H. pylori histidine kinases CheAY2 and CheA´ lacking the CheY-like domain (CheY2) act as ATP-dependent autokinases. Similar to other CheA proteins CheA´ shows a kinetic of phosphorylation represented by an exponential time course, while the kinetics of phosphorylation of CheAY2 is characterized by a short exponential time course followed by the hydrolysis of CheAY2~P. Therefore, it was demonstrated that the presence of the CheY2-like receiver domain influences the stability of the phosphorylated P1 domain of the CheA part of the bifunctional protein. Furthermore, it was proven that both CheY1 and CheY2 are phosphorylated by CheAY2 and CheA´~P and that the three CheV proteins mediate the dephosphorylation of CheA´~P, although with a clearly reduced efficiency as compared to CheY1 and CheY2. Moreover, CheA´ is capable of donating its phospho group to the CheY1 protein from C. jejuni and to CheY protein from E. coli. Retrophosphorylation experiments indicated that CheY1~P is able to transfer the phosphate group back to the HK CheAY2 and the receiver domain present in the bifunctional CheAY2 protein acts as a phosphate sink fine tuning the activity of the freely diffusible CheY1 protein, which is thought to interact with the flagellar motor. Hence, in this work evidence of a complex phosphorelay in the chemotaxis system was obtained which has similarities to other systems with multiple CheY proteins. The role of the CheV proteins remain unclear at the moment, but they might be engaged in a further fine regulation of the phosphate flow in this complex chemotaxis system and the independent function of the two domains CheA´ and CheY2 is not sufficient for normal chemotactic signalling in vivo. KW - Helicobacter pylori KW - Chemotaxis KW - Motilität KW - Signaltransduktion KW - Helicobacter pylori KW - Flagellensynthese KW - Chemotaxis KW - Phosphotransferreaktionen KW - Helicobacter pylori KW - Flagella KW - Chemotaxis KW - Phosphotransfer reactions Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-15698 ER - TY - THES A1 - Heidenreich, Julius Frederik T1 - Characterization of the widely used Rac1-inhibitors NSC23766 and EHT1864 in mouse platelets T1 - Untersuchung der Rac1-Inhibitoren NSC23766 und EHT1864 in murinen Thrombozyten N2 - Platelet activation and aggregation at sites of vascular injury is critical to prevent excessive blood loss, but may also lead to life-threatening ischemic diseases, such as myocardial infarction and stroke. Extracellular agonists induce platelet activation by stimulation of platelet membrane receptors. Signal transduction results in reorganization of the cytoskeleton, shape change, platelet adhesion and aggregation, cumulating in thrombus formation. Several Rho GTPases, including Rac1, Cdc42 and RhoA, are essential mediators of subsequent intracellular transduction of ITAM- and GPCR-signaling. Therefore, inhibition or knockout can result in severely defective platelet signaling. Mice with platelet specific Rac1-deficiency are protected from arterial thrombosis. This benefit highlights further investigation of Rac1-specific functions and its potential as a new pharmacological target for prevention of cardiovascular diseases. Two newly developed synthetic compounds, NSC23766 and EHT1864, were proposed to provide highly specific inhibition of Rac1 activity, but both drugs have never been tested in Rac1-deficient cell systems to rule out potential Rac1-independent effects. This study revealed significant off-target effects of NSC23766 and EHT1864 that occurred in a dose-dependent fashion in both wild-type and Rac1-deficient platelets. Both inhibitors individually affected resting platelets after treatment, either by altering membrane protein expression (NSC23766) or by a marked decrease of platelet viability (EHT1864). Platelet apoptosis could be confirmed by enhanced levels of phosphatidylserine exposure and decreased mitochondrial membrane potential. Phosphorylation studies of the major effector proteins of Rac1 revealed that NSC23766 and EHT1864 abolish PAK1/PAK2 activation independently of Rac1 in wild-type and knockout platelets, which may contribute to the observed off-target effects. Additionally, this study demonstrated the involvement of Rac1 in G protein-coupled receptor-mediated platelet activation and GPIb-induced signaling. Furthermore, the data revealed that Rac1 is dispensable in the process of integrin IIb 3-mediated clot retraction. This study unveiled that new pharmacological approaches in antithrombotic therapy with Rac1 as molecular target have to be designed carefully in order to obtain high specificity and minimize potential off-target effects. N2 - Die Aktivierung und Aggregation von Thrombozyten nach Gefäßverletzungen ist entscheidend um starken Blutverlust zu vermeiden. Allerdings können diese Prozesse auch zu lebensbedrohlichen ischämischen Erkrankungen führen, wie beispielsweise Myokardinfarkt und Schlaganfall. Die Stimulation der Membranrezeptoren durch Triggersubstanzen leitet die Thrombozytenaktivierung und somit die Reorganisation des Zytoskeletts ein. Dies ermöglicht die Adhäsion und Aggregation der Thrombozyten und führt letztendlich zur Thrombusbildung. Die Rho GTPasen Rac1, Cdc42 und RhoA sind als wichtige Mediatoren an der intrazellulären Signaltransduktion beteiligt. Eine medikamentöse Hemmung oder ein genetischer Knockout kann daher die intrazellulären Signalkaskaden so stark beeinträchtigen, dass eine effiziente Aktivierung der Thrombozyten nicht mehr möglich ist. In Mäusen mit thrombozytenspezifischem Knockout von Rac1 wurde festgestellt, dass der Funktionsverlust von Rac1 gleichzeitig auch Schutz vor der Entwicklung von arterieller Thrombose bedeutet. Könnte man sich diese Tatsache pharmakologisch zunutze machen, würde die Hemmung von Rac1 möglicherweise einen neuen, erfolgsversprechenden Ansatz in der Prävention von kardiovaskulären Erkrankungen darstellen. Für den Forschungseinsatz wurden die zwei synthetischen Inhibitoren NSC23766 und EHT1864 entwickelt um Rac1-vermittelte Funktionen zu studieren. Beide Substanzen versprechen eine hochspezifische Hemmung der Rac(1)-Aktivität, wurden bisher jedoch nicht in Zellsystemen mit Rac1-Defizienz verwendet um die Substanzen kritisch auf mögliche, unerwünschte Nebenwirkungen zu untersuchen. In dieser Dissertation wurde gezeigt, dass NSC23766 und EHT1864 zwar effektive Hemmstoffe für Rac1 sind, allerdings genauso Rac1-unabhängige Nebenwirkungen verursachen. Beide Hemmstoffe führten zu Veränderungen der Thrombozyten: Während unter NSC23766 eine verminderte Expression von Membranrezeptoren beobachtet wurde, führte EHT1864 zu einer stark beeinträchtigten Vitalität der Thrombozyten. Anhand von erhöhten Phosphatidylserin-Werten und einer Veränderung des mitochondrialen Membranpotenzials in den behandelten Thrombozyten konnte die EHT1864-vermittelte Apoptose nachgewiesen werden. Letztendlich wurde anhand der verminderten Phosphorylierung von PAK1/PAK2 gezeigt, dass die Aktivierung dieser Rac1-Effektorproteine durch NSC23766 und EHT1864 direkt unterdrückt wird. Zusätzlich zu den Inhibitor-vermittelten Effekten wurde anhand von Rac1-defizienten Thrombozyten nachgewiesen, dass Rac1 auch an GPCR- und GPIb-vermittelten Signalkaskaden beteiligt ist. Außerdem wurde beobachtet, dass Rac1 für die Integrin IIb 3-vermittelte clot retraction entbehrlich ist. Die Ergebnisse dieser Studie legen dar, dass neue pharmakologische Substanzen für die antithrombotische Therapie mit Rac1 als Zielmolekül gründlich erforscht und hinterfragt werden müssen um die Spezifität zu maximieren und vor allem das Nebenwirkungsprofil zu minimieren. KW - Thrombozyt KW - Thrombose KW - Signaltransduktion KW - Enzyminhibitor KW - Rho-Proteine KW - mouse platelets KW - rac1 inhibitors Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-165453 ER - TY - THES A1 - Roos, Claudia T1 - Characterization of tumor necrosis factor-like weak inducer of apoptosis (TWEAK)-induced signaling pathways T1 - Charakterisierung TWEAK induzierter Signalwege N2 - TWEAK ist ein typischer Vertreter der TNF Ligandenfamilie. TWEAK wird als Typ II Transmembranprotein exprimiert, kann jedoch durch proteolytische Prozessierung auch als lösliches Protein freigesetzt werden. In dieser Arbeit wird gezeigt, dass oligomerisiertes TWEAK in Hinblick auf die Aktivierung des klassischen NFκB Signalweges deutlich aktiver ist als lösliches, trimeres TWEAK. Jedoch sind beide TWEAK-Varianten in der Lage, die Depletion von TRAF2 und die Prozessierung von p100, beides Kennzeichen für die Aktivierung des alternativen NFκB Signalweges, zu induzieren. Ebenso wie andere lösliche TNF-Liganden, die ihren entsprechenden Rezeptor nur schwach aktivieren, erlangt lösliches TWEAK durch Oligomerisierung vergleichbare Aktivität zum membrangebundenen Liganden. TRAF2 spielt eine Schlüsselrolle in der TWEAK-vermittelten NFκB Aktivierung. Durch Depletion oder Degradation von TRAF2 fällt die Entscheidung, ob lediglich der alternative oder beide, der klassische und der alternative NFκB Signalweg aktiviert werden. Die Blockade des TWEAK-Rezeptors Fn14 inhibiert die Aktivierung der NFκB Signalwege, ungeachtet welche Form von TWEAK zur Stimulation genutzt wird. Das weist darauf hin, dass die unterschiedlichen Aktivitäten der beiden TWEAK-Varianten in der Induktion des klassischen und alternativen NFκB Signalweges nicht durch die Nutzung verschiedener Rezeptoren verursacht sind. Damit wird in dieser Arbeit anhand von TWEAK zum ersten mal gezeigt, dass ein TNF Ligand in unterschiedlichen Varianten qualitativ unterschiedliche Aktivitäten des entsprechenden TNF Rezeptors auslöst. N2 - TWEAK is a typical member oft he TNF ligand family. Therefore it is initially expressed as a type II transmembrane protein, but a soluble variant can be released by proteolytic processing. In this work it is shown that oligomerized TWEAK is more competent than soluble, trimeric TWEAK regarding the activation of classical NFκB signaling pathway. However, both TWEAK variants are able to induce depletion of TRAF2 and processing of p100, which are hallmarks for the activation of the noncanonical NFκB pathway. Like other solube TNF ligands with no or poor activity on their corresponding receptor, TWEAK gains high activity upon oligomerization resembling the activity of the transmembrane ligand. TRAF2 has a key role in TWEAK-induced NFκB signaling. Depletion or degradation of TRAF2 is crucial for activation of the noncanonial or both, the classical and the noncanonical NFκB pathway. Blocking the TWEAK receptor Fn14 inhibits the activation of NFκB signaling, irrespective of the TWEAK form used for stimulation. This indicates that the different activities of the two TWEAK variants in activation of classical and noncanonical NFκB signaling are not caused by the use of different receptors. Therefore this study on TWEAK is the first reported case where one TNF ligand in different variants induces qualitatively different activities of the corresponding TNF receptor. KW - Tumor-Nekrose-Faktor KW - Signaltransduktion KW - Fn14 KW - NFkappaB KW - p100 KW - TRAF2 KW - TWEAK KW - Fn14 KW - NFkappaB KW - p100 KW - TRAF2 KW - TWEAK Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-45295 ER - TY - THES A1 - Thakar, Juilee T1 - Computational models for the study of responses to infections T1 - Bioinformatische Modelle zur Analyse der Immunantwort auf Infektionen N2 - In diesem Jahrhundert haben neue experimentelle Techniken und Computer-Verfahren enorme Mengen an Information erzeugt, die bereits viele biologische Rätsel enthüllt haben. Doch die Komplexität biologischer Systeme wirft immer weitere neue Fragen auf. Um ein System zu verstehen, bestand der Hauptansatz bis jetzt darin, es in Komponenten zu zerlegen, die untersucht werden können. Ein neues Paradigma verknüpft die einzelnen Informationsteile, um sie auf globaler Ebene verstehen zu können. In der vorgelegten Doktorarbeit habe ich deshalb versucht, infektiöse Krankheiten mit globalen Methoden („Systembiologie“) bioinformatisch zu untersuchen. Im ersten Teil wird der Apoptose-Signalweg analysiert. Apoptose (Programmierter Zelltod) wird bei verschiedenen Infektionen, zum Beispiel bei Viruserkrankungen, als Abwehrmaßnahme eingesetzt. Die Interaktionen zwischen Proteinen, die ‚death’ Domänen beinhalten, wurden untersucht, um folgende Fragen zu klären: i) wie wird die Spezifität der Interaktionen erzielt? –sie wird durch Adapter erreicht, ii) wie werden Proliferation/ Überlebenssignale während der Aktivierung der Apoptose eingeleitet? – wir fanden Hinweise für eine entscheidende Rolle des RIP Proteins (Rezeptor-Interagierende Serine/Threonine-Proteinkinase 1). Das Modell erlaubte uns, die Interaktions-Oberflächen von RIP vorherzusagen. Der Signalweg wurde anschließend auf globaler Ebene mit Simulationen für verschiedene Zeitpunkte analysiert, um die Evolution der Aktivatoren und Inhibitoren des Signalwegs und seine Struktur besser zu verstehen. Weiterhin wird die Signalverarbeitung für Apoptosis-Signalwege in der Maus detailliert modelliert, um den Konzentrationsverlauf der Effektor-Kaspasen vorherzusagen. Weitere experimentelle Messungen von Kaspase-3 und die Überlebenskurven von Zellen bestätigen das Modell. Der zweite Teil der Resultate konzentriert sich auf das Phagosom, eine Organelle, die eine entscheidende Rolle bei der Eliminierung von Krankheitserregern spielt. Dies wird am Beispiel von M. tuberculosis veranschaulicht. Die Fragestellung wird wiederum in zwei Aspekten behandelt: i) Um die Prozesse, die durch M. tuberculosis inhibiert werden zu verstehen, haben wir uns auf das Phospholipid-Netzwerk konzentriert, das bei der Unterdrückung oder Aktivierung der Aktin-Polymerisation eine große Rolle spielt. Wir haben für diese Netzwerkanalyse eine Simulation für verschiedene Zeitpunkte ähnlich wie in Teil eins angewandt. ii) Es wird vermutet, dass Aktin-Polymere bei der Fusion des Phagosoms mit dem Lysosom eine Rolle spielen. Um diese Hypothese zu untersuchen, wurde ein in silico Modell von uns entwickelt. Wir fanden heraus, dass in der Anwesenheit von Aktin-Polymeren die Suchzeit für das Lysosom um das Fünffache reduziert wurde. Weiterhin wurden die Effekte der Länge der Aktin-Polymere, die Größe der Lysosomen sowie der Phagosomen und etliche andere Modellparameter analysiert. Nach der Untersuchung eines Signalwegs und einer Organelle führte der nächste Schritt zur Untersuchung eines komplexen biologischen Systems der Infektabwehr. Dies wurde am Beispiel der Wirt-Pathogen Interaktion bei Bordetella pertussis und Bordetella bronchiseptica dargestellt. Die geringe Menge verfügbarer quantitativer Daten war der ausschlaggebende Faktor bei unserer Modellwahl. Für die dynamische Simulation wurde ein selbst entwickeltes Bool’sches Modell verwendet. Die Ergebnisse sagen wichtige Faktoren bei der Pathologie von Bordetellen hervor, besonders die Bedeutung der Th1 assoziierten Antworten und dagegen nicht der Th2 assoziierten Antworten für die Eliminierung des Pathogens. Einige der quantitativen Vorhersagen wurden durch Experimente wie die Untersuchung des Verlaufs einer Infektion in verschiedenen Mutanten und Wildtyp-Mäusen überprüft. Die begrenzte Verfügbarkeit kinetischer Daten war der kritische Faktor bei der Auswahl der computer-gestützten Modelle. Der Erfolg unserer Modelle konnte durch den Vergleich mit experimentellen Beobachtungen belegt werden. Die vergleichenden Modelle in Kapitel 6 und 9 können zur Untersuchung neuer Wirt-Pathogen Interaktionen verwendet werden. Beispielsweise führt in Kapitel 6 die Analyse von Inhibitoren und inhibitorischer Signalwege aus drei Organismen zur Identifikation wichtiger regulatorischer Zentren in komplexen Organismen und in Kapitel 9 ermöglicht die Identifikation von drei Phasen in B. bronchiseptica und der Inhibition von IFN-γ durch den Faktor TTSS die Untersuchung ähnlicher Phasen und die Inhibition von IFN-γ in B. pertussis. Eine weitere wichtige Bedeutung bekommen diese Modelle durch die mögliche Identifikation neuer, essentieller Komponenten in Wirt-Pathogen Interaktionen. In silico Modelle der Effekte von Deletionen zeigen solche Komponenten auf, die anschließend durch experimentelle Mutationen weiter untersucht werden können. N2 - In this century new experimental and computational techniques are adding an enormous amount of information, revealing many biological mysteries. The complexities of biological systems still broach new questions. Till now the main approach to understand a system has been to divide it in components that can be studied. The upcoming new paradigm is to combine the pieces of information in order to understand it at a global level. In the present thesis we have tried to study infectious diseases with such a global ‘Systems Biology’ approach. In the first part the apoptosis pathway is analyzed. Apoptosis (Programmed cell death) is used as a counter measure in different infections, for example viral infections. The interactions between death domain containing proteins are studied to address the following questions: i) How specificity is maintained - showing that it is induced through adaptors, ii) how proliferation/ survival signals are induced during activation of apoptosis – suggesting the pivotal role of RIP. The model also allowed us to detect new possible interacting surfaces. The pathway is then studied at a global level in a time step simulation to understand the evolution of the topology of activators and inhibitors of the pathway. Signal processing is further modeled in detail for the apoptosis pathway in M. musculus to predict the concentration time course of effector caspases. Further, experimental measurements of caspase-3 and viability of cells validate the model. The second part focuses on the phagosome, an organelle which plays an essential role in removal of pathogens as exemplified by M. tuberculosis. Again the problem is addressed in two main sections: i) To understanding the processes that are inhibited by M. tuberculosis; we focused on the phospholipid network applying a time step simulation in section one, which plays an important role in inhibition or activation of actin polymerization on the phagosome membrane. ii) Furthermore, actin polymers are suggested to play a role in the fusion of the phagosome with lysosome. To check this hypothesis an in silico model was developed; we find that the search time is reduced by 5 fold in the presence of actin polymers. Further the effect of length of actin polymers, dimensions of lysosome, phagosome and other model parameter is analyzed. After studying a pathway and then an organelle, the next step was to move to the system. This was exemplified by the host pathogen interactions between Bordetella pertussis and Bordetella bronchiseptica. The limited availability of quantitative information was the crucial factor behind the choice of the model type. A Boolean model was developed which was used for a dynamic simulation. The results predict important factors playing a role in Bordetella pathology especially the importance of Th1 related responses and not Th2 related responses in the clearance of the pathogen. Some of the quantitative predictions have been counterchecked by experimental results such as the time course of infection in different mutants and wild type mice. All these computational models have been developed in presence of limited kinetic data. The success of these models has been validated by comparison with experimental observations. Comparative models studied in chapters 6 and 9 can be used to explore new host pathogen interactions. For example in chapter 6, the analysis of inhibitors and inhibitory paths in three organism leads to the identification of regulatory hotspots in complex organisms and in chapter 9 the identification of three phases in B. bronchiseptica and inhibition of IFN-γ by TTSS lead us to explore similar phases and inhibition of IFN-γ in B. pertussis. Further an important significance of these models is to identify new components playing an essential role in host-pathogen interactions. In silico deletions can point out such components which can be further analyzed by experimental mutations. KW - Bordetella pertussis KW - Infektion KW - Apoptosis KW - Signaltransduktion KW - Bioinformatik KW - Tuberkelbakterium KW - Biologische Kaskaden KW - Bordetellae KW - M. tuberculosis KW - Apoptose KW - Biological cascades KW - Bordetellae KW - M. tuberculosis KW - Apoptosis Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-17266 ER - TY - THES A1 - Dindas, Julian T1 - Cytosolic Ca\(^2\)\(^+\), a master regulator of vacuolar ion conductance and fast auxin signaling in \(Arabidopsis\) \(thaliana\) T1 - Zytosolisches Ca\(^2\)\(^+\), ein zentraler Regulator der vakuolären Ionenleitfähigkeit und der schnellen Auxin-Signaltransduktion in \(Arabidopsis\) \(thaliana\) N2 - Das Phytohormon Auxin erfüllt wichtige Funktionen bei der Initiierung von pflanzlichen Geweben und Organen, wie auch in der Steuerung des Wurzelwachstums im Zusammenspiel mit äußeren Reizen wie Schwerkraft, Wasser- und Nähstoffverfügbarkeit. Diese Funktionen basieren dabei vor allem auf der Auxin-abhängigen Regulation von Zellteilung und -streckung. Wichtig für letzteres ist dabei die Kontrolle des Zellturgors durch die Vakuole. Als Speicher für Nährstoffe, Metabolite und Toxine sind Vakuolen von essentieller Bedeutung. Vakuolär gespeicherte Metabolite und Ionen werden sowohl über aktive Transportprozesse, als auch passiv durch Ionenkanäle, über die vakuoläre Membran mit dem Zytoplasma ausgetauscht. In ihrer Funktion als second messenger sind Kalziumionen wichtige Regulatoren, aber auch Gegenstand vakuolärer Transportprozesse. Änderungen der zytosolischen Kalziumkonzentration wirken nicht nur lokal, sie werden auch mit einer Signalweiterleitung über längere Distanzen in Verbindung gebracht. Im Rahmen dieser Arbeit wurden elektrophysiologische Methoden mit bildgebenden Methoden kombiniert um Einblicke in das Zusammenspiel zwischen zytosolischen Kalziumsignalen, vakuolärer Transportprozesse und der Auxin-Physiologie im intakten pflanzlichen Organismus zu gewinnen. Kalziumsignale sind an der Regulierung vakuolärer Ionenkanäle und Transporter beteiligt. Um dies im intakten Organismus zu untersuchen wurden im Modellsystem junger Wurzelhaare von Arabidopsis thaliana Messungen mit intrazellulären Mikroelektroden durchgeführt. Mittels der Zwei-Elektroden-Spannungsklemm-Technik konnte bestätigt werden, dass die vakuoläre Membran der limitierende elektrische Wiederstand während intravakuolärer Messungen ist und so gemessene Ionenströme in der Tat nur die Ströme über die vakuoläre Membran repräsentieren. Die bereits bekannte zeitabhängige Abnahme der vakuolären Leitfähigkeit in Einstichexperimenten konnte weiterhin mit einer einstichbedingten, transienten Erhöhung der zytosolischen Kalziumkonzentration korreliert werden. Durch intravakuoläre Spannungsklemmexperimente in Wurzelhaarzellen von Kalziumreporterpflanzen konnte dieser Zusammenhang zwischen vakuolärer Leitfähigkeit und der zytosolischen Kalziumkonzentration bestätigt werden. Die Vakuole ist jedoch nicht nur ein Empfänger zytosolischer Kalziumsignale. Da die Vakuole den größten intrazellulären Kalziumspeicher darstellt, wird seit Langem diskutiert, ob sie auch an der Erzeugung solcher Signale beteiligt ist. Dies konnte in intakten Wurzelhaarzellen bestätigt werden. Änderungen des vakuolären Membranpotentials wirkten sich auf die zytosolische Kalziumkonzentration in diesen Zellen aus. Während depolarisierende Potentiale zu einer Erhöhung der zytosolischen Kalziumkonzentration führten, bewirkte eine Hyperpolarisierung der vakuolären Membran das Gegenteil. Thermodynamische Überlegungen zum passiven und aktiven Kalziumtransport über die vakuoläre Membran legten dabei den Schluss nahe, dass die hierin beschriebenen Ergebnisse das Verhalten von vakuolären H+/Ca2+ Austauschern wiederspiegeln, deren Aktivität durch die protonenmotorische Kraft bestimmt wird. Im Rahmen dieser Arbeit stellte sich weiterhin heraus, dass zytosolisches Kalzium ebenso ein zentraler Regulator eines schnellen Auxin-induzierten Signalweges ist, über den der polare Transport des Hormons reguliert wird. Im gleichen Modellsystem junger Wurzelhaare konnte gezeigt werden, dass die externe Applikation von Auxin eine sehr schnelle, Auxinkonzentrations- und pH-abhängige Depolarisation des Plasmamembranpotentials zur Folge hat. Synchron zur Depolarisation des Plasmamembranpotentials wurden im Zytosol transiente Kalziumsignale registriert. Diese wurden durch einen von Auxin aktivierten Einstrom von Kalziumionen durch den Ionenkanal CNGC14 hervorgerufen. Experimente an Verlustmutanten als auch pharmakologische Experimente zeigten, dass zur Auxin-induzierten Aktivierung des Kalziumkanals die Auxin-Perzeption durch die F-box Proteine der TIR1/AFB Familie erforderlich ist. Durch Untersuchungen der Auxin-abhängigen Depolarisation wie auch des Auxin-induzierten Einstroms von Protonen in epidermale Wurzelzellen von Verlustmutanten konnte gezeigt werden, dass die sekundär aktive Aufnahme von Auxin durch das hochaffine Transportprotein AUX1 für die schnelle Depolarisation verantwortlich ist. Nicht nur die zytosolischen Kalziumsignale korrelierten mit der CNGC14 Funktion, sondern ebenso die AUX1-vermittelte Depolarisation von Wurzelhaaren. Eine unveränderte Expression von AUX1 in der cngc14 Verlustmutante legte dabei den Schluss nahe, dass die Aktivität von AUX1 posttranslational reguliert werden muss. Diese Hypothese erfuhr Unterstützung durch Experimente, in denen die Behandlung mit dem Kalziumkanalblocker Lanthan zu einer Inaktivierung von AUX1 im Wildtyp führte. Die zytosolische Beladung einzelner epidermaler Wurzelzellen mit Auxin hatte die Ausbreitung lateraler und acropetaler Kalziumwellen zur Folge. Diese korrelierten mit einer Verschiebung des Auxin-Gradienten an der Wurzelspitze und unterstützten somit eine hypothetische Kalziumabhängige Regulation des polaren Auxin Transports. Ein Model für einen schnellen, Auxin induzierten und kalziumabhängigen Signalweg wird präsentiert und dessen Bedeutung für das gravitrope Wurzelwachstum diskutiert. Da die AUX1-vermittelte Depolarisation in Abhängigkeit von der externen Phosphatkonzentration variierte, wird die Bedeutung dieses schnellen Signalwegs ebenso für die Anpassung des Wurzelhaarwachstums an eine nicht ausreichende Verfügbarkeit von Phosphat diskutiert. N2 - The phytohormone auxin performs important functions in the initiation of plant tissues and organs, as well as in the control of root growth in conjunction with external stimuli such as gravity, water and nutrient availability. These functions are based primarily on the auxin-dependent regulation of cell division and elongation. Important for the latter is the control of the cell turgor by the vacuole. As storage for nutrients, metabolites and toxins, vacuoles are of vital importance. Vacuolar stored metabolites and ions are exchanged across the vacuolar membrane with the cytoplasm via active transport processes as well as passively through ion channels. In their function as second messenger, calcium ions are important regulators but also subject to vacuolar transport processes. Changes in the cytosolic calcium concentration not only act locally, but are also associated with signal transduction over longer distances. In this work, electrophysiological methods were combined with imaging techniques to gain insights into the interaction between cytosolic calcium signals, vacuolar transport processes and auxin physiology in the intact plant organism. Calcium signals are involved in the regulation of vacuolar ion channels and transporters. In order to investigate this in the intact organism, intracellular microelectrode measurements were performed in the model system of bulging Arabidopsis thaliana root hairs. By means of the two-electrode voltage-clamp technique, it could be confirmed that the vacuolar membrane is the limiting electrical resistance during intravacuolar measurements and thus measured ion currents actually represent only the currents across the vacuolar membrane. The already known time-dependent decrease of vacuolar conductivity during intravacuolar experiments could be further correlated with an impalement-related, transient increase of the cytosolic calcium concentration. Intravacuolar voltage-clamp experiments in root hair cells of calcium reporter plants confirmed this relationship between vacuolar conductivity and the cytosolic calcium concentration. However, the vacuole is not just a recipient of cytosolic calcium signals. Since the vacuole represents the largest intracellular calcium reservoir, it has long been argued that it is also involved in the generation of such signals. This could be confirmed in intact root hair cells. Changes in the vacuolar membrane potential affected the cytosolic calcium concentration in these cells. While depolarizing potentials led to an increase of the cytosolic calcium concentration, hyperpolarization of the vacuolar membrane caused the opposite. Thermodynamic considerations of passive and active calcium transport across the vacuolar membrane suggested that the results described herein reflect the behaviour of vacuolar H+/Ca2+ exchangers whose activity is determined by the proton motive force. In addition, cytosolic calcium has been shown to be a key regulator of a rapid auxin-induced signaling pathway that regulates polar transport of the hormone. In the same model system of bulging root hairs it could be shown that the external application of auxin results in a very fast, auxin concentration- and pH-dependent depolarization of the plasma membrane potential. Synchronous with the depolarization of the plasma membrane potential, transient calcium signals were recorded in the cytosol. These were caused by an auxin-activated influx of calcium ions through the ion channel CNGC14. Experiments on loss-of-function mutants as well as pharmacological experiments showed that the auxin-induced activation of the calcium channel requires auxin-perception by the F-box proteins of the TIR1/AFB family. Investigations of auxin-dependent depolarization as well as the auxin-induced influx of protons into epidermal root cells of loss-of-function mutants showed that the secondary active uptake of auxin by the high-affinity transport protein AUX1 is responsible for the rapid depolarization Not only the cytosolic calcium signals correlated with CNGC14 function, but also the AUX1-mediated depolarization of root hairs. An unchanged expression of AUX1 in the cngc14 loss-of-function mutant suggested that the activity of AUX1 must be post-translationally regulated. This hypothesis was supported by experiments in which treatment with the calcium channel blocker lanthanum led to inactivation of AUX1 in the wild type. The cytosolic loading of individual epidermal root cells with auxin resulted in the spread of lateral and acropetal calcium waves. These correlated with a shift of the auxin gradient at the root apex and thus supported a hypothetical calcium-dependent regulation of polar auxin transport. A model for a rapid, auxin-induced and calcium-dependent signaling pathway is presented and its importance for gravitropic root growth is discussed. Since AUX1-mediated depolarization varied with external phosphate concentration, the importance of this rapid signaling pathway is also discussed for the adaptation of root hair growth to an inadequate availability of phosphate. KW - Ackerschmalwand KW - Auxine KW - Vakuole KW - Calcium KW - Elektrophysiologie KW - Pflanzenhormone KW - Hormontransport KW - Ionenleitfähigkeit KW - Signaltransduktion KW - Arabidopsis thaliana Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158638 ER - TY - THES A1 - Baljuls, Angela T1 - Differences and Similarities in the Regulation of RAF Isoforms: Identification of Novel A-RAF Phosphorylation Sites T1 - Unterschiede und Ähnlichkeiten in der Regulierung der RAF Isoformen : Identifizierung der neuen A-RAF Phosphorylierungsstellen N2 - In mammals, the RAF family of serine/threonine kinases consists of three members, A-, B- and C-RAF. Activation of RAF kinases involves a complex series of phosphorylations. Although the most prominent phosphorylation sites of B- and C-RAF are well characterized, little is known about regulatory phosphorylation of A-RAF. Using mass spectrometry, we identified here a number of novel in vivo phosphorylation sites in A-RAF. The physiological role and the function of these sites were investigated subsequently by amino acid exchange at the relevant positions. In particular, we found that S432 participates in MEK binding and is indispensable for A-RAF signaling. On the other hand, phosphorylation within the activation segment does not contribute to epidermal growth factor-mediated activation. Regarding regulation of A-RAF activity by 14-3-3 proteins, we show that A-RAF activity is regulated differentially by its C-terminal and internal 14-3-3 binding domain. Furthermore, by use of SPR technique, we found that 14-3-3 proteins associate with RAF in an isoform-specific manner. Of importance, we identified a novel regulatory domain in A-RAF (referred to as IH-segment) positioned between amino acids 248 and 267, which contains seven putative phosphorylation sites. Three of these sites, serines 257, 262 and 264, regulate A-RAF activation in a stimulatory manner. The spatial model of the A-RAF fragment including residues between S246 and E277 revealed a “switch of charge” at the molecular surface of the IH-region upon phosphorylation, suggesting a mechanism in which the high accumulation of negative charges may lead to an electrostatic destabilization of protein/membrane interaction resulting in depletion of A-RAF from the plasma membrane. Activation of B- and C-RAF is regulated by phosphorylation at conserved residues within the negative-charge regulatory region (N-region). Identification of phosphopeptides covering the sequence of the N-region led to the conclusion that, similar to B- and C-RAF, kinase activity of A-RAF is regulated by phosphorylation of the N-region. Abrogation of A-RAF activity by S299A substitution and elevated activity of the A-RAF-Y301D-Y302D mutant confirmed this conclusion. In addition, we studied the role of the non-conserved residues within the N-region in the activation process of RAF kinases. The non-conserved amino acids in positions –3 and +1 relative to the highly conserved S299 in A-RAF and S338 in C-RAF have so far not been considered as regulatory residues. Here, we demonstrate that Y296R substitution in A-RAF led to a constitutively active kinase. In contrast, G300S substitution (mimicking B- and C-RAF) acts in an inhibitory manner. These data were confirmed by analogous mutations in C-RAF. Based on the three-dimensional structure of the catalytic domain of B-RAF, a tight interaction between the N-region residue S339 and the catalytic domain residue R398 was identified in C-RAF and proposed to inhibit the kinase activity of RAF proteins. Furthermore, Y296 in A-RAF favors a spatial orientation of the N-region segment, which enables a tighter contact to the catalytic domain, whereas a glutamine residue at this position in C-RAF abrogates this interaction. Considering this observation, we suggest that Y296, which is unique for A-RAF, is a major determinant of the low activating potency of this RAF isoform. Finally, the residues R359 in A-RAF and R398 in C-RAF, which interact with the N-region, are also involved in binding of phosphatidic acid. Substitution of this conserved arginine by alanine resulted in accumulation of hyper-phosphorylated form of RAF, suggesting that this residue play a crucial role in phosphorylation-mediated feedback regulation of A- and C-RAF. Collectively, we provide here for the first time a detailed analysis of in vivo A-RAF phosphorylation status and demonstrate that regulation of A-RAF by phosphorylation exhibits unique features compared with B- and C-RAF. N2 - Die Protein-Familie der Serin/Threonin-spezifischen RAF-Kinasen umfasst in Säugetieren drei Mitglieder, A-, B- und C-RAF. Bei der Aktivierung dieser Kinasen spielen Phosphorylierungs-ereignisse eine entscheidende Rolle. Im Gegensatz zu B- und C-RAF, deren Phosphorylierungsstellen ausgiebig charakterisiert sind, blieb die Phosphorylierung von A-RAF weitgehend unerforscht. In der vorliegenden Arbeit wurden unter Verwendung der massenspektrometrischen Analyse zahlreiche neue in vivo A-RAF-Phosphorylierungsstellen identifiziert. Die physiologische Relevanz und die Funktion dieser Stellen wurden anschließend durch Aminosäurenaustausch an den relevanten Positionen untersucht. Dabei wurde festgestellt, dass S432 in der A-RAF-Bindung zu MEK involviert und für die Signalweiterleitung unverzichtbar ist. Hingegen ist die EGF-bedingte A-RAF-Aktivierung nicht von der Phosphorylierung innerhalb des Aktivierungssegments abhängig. Hinsichtlich der Regulation von A-RAF-Aktivierung durch 14-3-3-Proteine, wurde hier gezeigt, dass die katalytische Aktivität von A-RAF durch die C-terminale und die interne 14-3-3-Bindungsdomänen unterschiedlich reguliert wird. Weiterhin wurde mittels SPR-Verfahren festgestellt, dass die Interaktion von 14-3-3-Proteinen mit RAF-Kinasen einen isoformspezifischen Charakter trägt. Von entscheidender Bedeutung war die Entdeckung einer neuen regulatorischen Domäne (hier als IH-Segment bezeichnet), die in der A-RAF-Sequenz die Aminosäuren 248 bis 267 umfasst und sieben A-RAF-spezifische Phosphorylierungsstellen enthält. Drei dieser Stellen, S257, S262 und S264, erwiesen sich als positive Regulatoren der A-RAF-Aktivierung. Das räumliche Modell dieses A-RAF-Fragments deckte eine „Ladungsumkehr“ an der molekularen Oberfläche der IH-Region infolge der Phosphorylierung auf. Dieser Befund begründete den Vorschlag eines Regulations-mechanismus, in dem die starke Akkumulierung der negativen Ladungen zu einer elektrostatischen Destabilisierung der Protein-Membran-Interaktion führt, was die Verdrängung der A-RAF-Kinase von der Plasma-Membran zur Folge haben könnte. Die Aktivierung von B- und C-RAF wird durch Phosphorylierung der sogenannten „negativ geladenen“ Region (N-Region) reguliert. Die Identifizierung mehrerer Phosphopeptide aus der N-Region von A-RAF veranlasste die Schlussfolgerung, dass die A-RAF-Aktivität ebenfalls durch die Phosphorylierung innerhalb dieser Region gesteuert werden könnte. In der Tat, die Aufhebung der A-RAF-Aktivität durch die S299A-Substitution und die erhöhte Aktivität der A-RAF-Y301D-Y302D-Mutante bestätigen diese Aussage. Darüberhinaus wurde die Rolle der nichtkonservierten Aminosäuren an den Positionen –3 und +1 relativ zum S299 in A-RAF und S338 in C-RAF im Aktivierungsprozess der RAF-Kinasen untersucht, nachdem diese ursprünglich nicht als regulatorische Stellen erkannt wurden. Es wird hier demonstriert, dass Y296R-Substitution der A-RAF-Kinase eine konstitutive Aktivität verleiht. Hingegen wirkte die G300S-Substitution, die von B- und C-RAF abgeleitet wurde, inhibitorisch. Diese Befunde wurden durch die analogen Mutationen in C-RAF bestätigt. Basierend auf der dreidimensionalen Struktur der katalytischen Domäne von B-RAF wurde eine Interaktion zwischen der N-Region und der katalytischen Domäne in A- und C-RAF festgestellt, die zu einer Inhibierung der Aktivität führen soll. Darüberhinaus wurde gezeigt, dass die räumliche Ausrichtung von Y296 in der N-Region von A-RAF einen engen Kontakt mit der katalytischen Domäne ermöglicht; dagegen hebt Glutamin in dieser Position die Interaktion auf. In Anbetracht dieser Befunde wurde vorschlagen, dass das A-RAF-spezifische Y296 das niedrige Aktivierungs-potential dieser RAF-Isoform determiniert. In diesem Zusammenhang wurde auch gefunden, dass die Aminosäuren R359 in A-RAF und R398 in C-RAF eine duale Funktion besitzen, indem sie sowohl mit der N-Region als auch mit Lipiden in Wechselwirkung treten können. Substitution dieser konservierten Arginine durch Alanin führte zur Akkumulierung der hyperphosphorylierten Formen der RAF-Kinasen, was die Schlussfolgerung erlaubt, dass diese Reste eine wichtige Rolle in der ERK-vermittelten Feedback-Regulation von A- und C-RAF spielen. Insgesamt wird hier zum ersten Mal eine detaillierte Analyse der in vivo A-RAF-Phosphorylierung geliefert und gezeigt, dass die phosphorylierungsvermittelte Regulation von A-RAF einzigartige Merkmale innerhalb der Familie von RAF-Kinasen aufweist. KW - Raf KW - Phosphorylierung KW - Signaltransduktion KW - RAF kinases KW - phosphorylation KW - signal trunsduction Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-36135 ER - TY - THES A1 - Lutz, Marion T1 - Effects of nerve growth factor on TGF-Beta,Smad signal transduction in PC12 cells T1 - Einfluß von NGF auf die TGF-ß/Smad Signaltransduktion in PC12 Zellen N2 - Transforming growth factor-ß (TGF-ß) is a multifunctional cytokine that is engaged in regulating versatile cellular processes that are pivotal for development and homeostasis of most tissues in multicellular organisms. TGF-ß signal transduction is initially propagated by binding of TGF-ß to transmembrane serine/threonine kinase receptors, designated TßRI and TßRII. Upon activation, the receptors phosphorylate Smad proteins which serve as downstream mediators that enter the nucleus and finally trigger transcriptional responses of specific genes. During the past years, it became evident that signaling cascades do not proceed in a linear fashion but rather represent a complex network of numerous pathways that mutually influence each other. Along these lines, members of the TGF-ß superfamily are attributed to synergize with neurotrophins. Together, they mediate neurotrophic effects in different populations of the nervous system, suggesting that an interdependence exists between TGF-ßs on the one hand and neurotrophins on the other. In the present work, the crosstalk of NGF and TGF-ß/Smad signaling pathways is characterized in rat pheochromocytoma cells (PC12) which are frequently used as a model system for neuronal differentiation. PC12 cells were found to be unresponsive to TGF-ß due to limiting levels of TßRII. However, stimulation with NGF results in initiation of Smad-mediated transcription independent of TGF-ß. Binding of NGF to functional TrkA receptors triggers activation of Smad3. This NGF-dependent Smad activation occurs by a mechanism which is different from being induced by TGF-ß receptors in that it provokes a different phosphorylation pattern of R-Smads. Together with an inferior role of TßRI, Smad3 is proposed to serve as a substrate for cellular kinases other than TßRI. Based on the presented involvement of components of both, the MAPK/Erk and the TAK1/MKK6 cascade, signal mediators of these pathways rank as candidates to mediate direct activation of Smad3. Smad3 is subsequently translocated to the nucleus and activates transcription in a Smad4-dependent manner. Negative regulation is provided by Smad7 which was found to act as a potent inhibitor of Smad signaling not only in TGF-ß- but also in NGF-mediated cascades. The potential of NGF to activate the Smad pathway independent of TGF-ß might be of special importance in regulating expression of genes that are essential for the development and function of neuronal cells or of other NGF-sensitive cells, in particular those which are TGF-ß-resistant. N2 - Das multifunktionelle Zytokin TGF-ß ist an der Regulation vielfältiger zellulärer Prozesse beteiligt. Diese sind für die Entwicklung und die Homöostase der meisten Gewebe vielzelliger Organismen essenziell. Die TGF-ß Signaltransduktionskaskade wird durch die Bindung des Zytokins an spezifische transmembrane Serin/Threonin-Kinase Rezeptoren (TßRI und TßRII) initiiert. Eine solche Rezeptoraktivierung führt zur Phosphorylierung von Smad Proteinen. Diese dienen der Signalweiterleitung, indem sie anschließend in den Zellkern translozieren und dort die Transkription spezifischer Zielgene modulieren. In den letzten Jahren wurde deutlich, dass Signalkaskaden nicht nur linear weitergeleitet werden, sondern dass vielmehr ein komplexes Netzwerk aus zahlreichen, sich gegenseitig regulierenden, Signalwegen existiert. In diesem Zusammenhang wird auch den Mitgliedern der TGF-ß Superfamilie zugeschrieben, dass sie mit Neurotrophinen kooperieren und somit deren Effekte in unterschiedlichen neuronalen Zellpopulationen unterstützen. In der vorliegenden Arbeit wurde der "crosstalk" von NGF- und TGF-ß/Smad-Signalwegen charakterisiert. Als Zellsystem dienten dazu Ratten Pheochromocytoma Zellen (PC12), die weithin als Modellsystem für neuronale Differenzierung verwendet werden. Basierend auf der Expression limitierender Mengen an TßRII, zeigen PC12 Zellen keine Responsivität gegenüber TGF-ß. Stimulation mit NGF hingegen resultiert - unabhängig von TGF-ß - in der Initiation von Smad-vermittelter Transkription. Die initiale Bindung von NGF an TrkA Rezeptoren führt zur Aktivierung von Smad3. Diese NGF-induzierte Smad-Aktivierung unterscheidet sich von der durch TGF-ß-Rezeptoren initiierten Aktivierung hinsichtlich des Phosphorylierungsmusters der R-Smads. Da weiterhin gezeigt werden konnte, dass die TGF-ß Rezeptoren für NGF-induzierte Ereignisse eine untergeordnete Rolle spielen, wird angenommen, dass Smad3 ein Substrat für andere zelluläre Kinasen als TßRI ist. Die hier nachgewiesene Beteiligung der MAPK/Erk Kaskade sowie des TAK1/MKK6 Signalwegs an der Weiterleitung des NGF-Signals machen deren Signalmoleküle zu potenziellen Kinasen für die direkte Aktivierung von Smad3. Im Anschluß daran erfolgt die nukleäre Translokation des Smad3 und spezifische Promotoraktivierungen unter Beteiligung von Smad4. Abschließend konnte gezeigt werden, dass das Smad7 Protein, nicht nur nach TGF-ß- sondern auch nach NGF-Stimulation als effektiver Inhibitor der Smad Signalkaskade wirkt. Die bislang unbekannte Fähigkeit, den Smad-Signaltransduktionsweg unabhängig von TGF-ß zu aktivieren, schreibt NGF eine besondere Bedeutung für die Genregulation in neuronalen Zellpopulationen oder anderen NGF-sensitiven - insbesondere TGF-ß-resistenten - Zellen zu. KW - Transforming growth factor beta KW - Nervenwachstumsfaktor KW - Signaltransduktion KW - TGF-ß KW - NGF KW - Signaltransduktion KW - TGF-ß KW - NGF KW - signal transduction KW - crosstalk Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-4248 ER - TY - THES A1 - Hyun, Tae Kyung T1 - Function and regulation of plant Mitogen-Activated Protein Kinases in metabolic and stress signaling pathways T1 - Funktion und Regulation von pflanzlichen Mitogen-aktivierten Proteinkinasen in metabolischen und Stress Signalwegen N2 - In Pflanzenzellen ist die Aktivierung von Mitogen-aktivierten Protein (MAP) Kinasen eine allgemeine Reaktion zur abwehrvermittelten Signaltransduktion. Da die nachgeschalteten Prozesse der Aktivierung der MAP Kinasen in Pflanzen weitestgehend unbekannt sind,wurde die Rolle der MAP Kinasen in Abhängigkeit von stressvermittelnden Stimuli auf die Abwehrmechanismen und den primären Kohlenhydratmetabolismus in Tomate untersucht. Dabei wurde die Beziehung zwischen MAP Kinasen (LpMPK2 und LPMPK3) und der extrazellulären Invertase Lin6, welche ein Schlüsselenzym der apoplastischen Phloementladung darstellt, analysiert. Es konnte gezeigt werden, dass die mRNAs von LpMPK3 und Lin6 sequenziell durch dieselben stressvermittelnden Stimuli (E-Fol, PGA,Verwundung, KCl) induziert werden. Die Induktion des Lin6 Promotors, erkennbar durch eine erhöhte β-Glucuronidase Aktivität 2 Stunden nach Behandlung der Reporterlinien mit Stimuli, war abhängig von der Expression und Aktivierung der LpMPK3. Die vorliegenden Daten zeigen, dass die Induktion von der extrazellulären Invertase Lin6 durch stressvermittelnde Stimuli LpMPK3 bedarf. Die Behandlung mit Glukose zeigte eine gleichzeitige Induktion der AtMPK4 und AtMPK6 Aktivität, welche durch Anionen-Austausch-Chromatographie separiert und mit Hilfe von spezifischen MAP Kinase Antikörpern nachgewiesen werden konnten. Zusammengefasst lassen diese Daten vermuten, dass die Aktivierung der MAP Kinasen eine zentrale Rolle in der Zucker vermittelten Signalübertragung spielt. Die Bewegung der Stomata wird durch umweltbedingte Einflüsse wie ichtintensität, Luftfeuchtigkeit und CO2-Konzentration kontrolliert. In Arabidopsis wird die Entwicklung und Strukturierung durch eine komplette MAP Kinasen Signalkaskade reguliert. Hingegen ist in höheren Pflanzen wenig über die CO2 induzierte Signalübertragung bei der Bewegung der Stomata bekannt. Experimente zeigten, dass hohe CO2 Konzentrationen eine schnelle und kurzzeitige Aktivierung von SIPK und NtMPK4 bewirken. Die Aktivierung der beiden MAP Kinasen könnte bei hoher CO2 Konzentration die Aktivierung eines Anionenkanals zur Stomata Bewegunng regulieren. Während in einer Vielzahl von Studien die antioxidativen Eigenschaften von Tocopherolen im Hinblick auf die Regulierung der Stresstoleranz beschrieben ist, sind die nicht-antioxidativen Eigenschaften von Tocopherolen in höheren Pflanzen bis heute nur wenig aufgeklärt. Daher wurde in Tabak die Funktion von α-Tocopherol auf die Stimuli-induzierte und MAP Kinasevermittelte Signalübertragung analysiert. Es wurde gezeigt, dass die Aktivierung der MAP Kinase durch die Behandlung mit einem pilzlichen Elizitor und dem Derivat α-Tocopherol- Phosphat induziert wird. Bei der Behandlung mit α-Tocopherol trat dieser Effekt nicht auf. Interessanterweise wurde bei α-Tocopherol im Gegensatz zu Ascorbinsäure ein kurzzeitiger inhibitorischer Effekt auf die Aktivierung der Stimuli-induzierten MAP Kinasen in BY2 Zellen und Tabakpflanzen beobachtet. Der Inhibitor-Aktivitäts-Test ließ vermuten, dass die Applikation indirekt die Aktivität von MAP Kinasen beeinflussen könnte. Diese Ergebnisse deuten auf eine negative Regulierung von α-Tocopherol auf die Stimuli-induzierte Signalübertragung durch Inaktivierung der MAP kinasen hin. Purin-Analoga sind aufgrund ihrer strukturellen Selektivität als spezifische Proteinkinase- Inhibitoren in Mammalia beschrieben. In dieser Arbeit wurden C2, N6, N9 –trisubstituierte Purine getestet, um grundlegende Beziehungen zwischen chemischer Struktur und inhibitorischen Effekten auf pflanzliche MAP Kinasen zu untersuchen. Die Modifikation der Substitution in der Position C2 und N9 bedingte eine erhöhte inhibitorische Aktivität von 6- (Benzylamino)-Purin Analoga. Daneben lassen die 6-(iso-Pentenylamino)-Purin Analoga vermuten, dass die Addition einer Methylgruppe an der N9 Position verglichen mit der Addition einer Isopropyl-Gruppe eine um das zweifache erhöhte inhibitorische Aktivität bewirkt. Zusammengefasst zeigen die Studien, dass die Selektivität und Wirksamkeit der Inhibitioren durch die Modifikation der chemischen Struktur verbessert wird. Desweiteren wurde die physiologische Funktion von AtPDP1 (Arabidopsis thaliana PLAT domain protein 1) auf die Regulation der Abwehrsignalübertragung, hervorgerufen durch biotsche und abiotische Faktoren, charakterisiert. Interessanterweise bewirkte die Überexpression von AtPDP1 eine erhöhte Empfindlichkeit gegen virulente Pathogene und nekrotrophe Pilze. Zudem begünstigte es die Bildung von Nekrosen aufgrund von unbekannten biotischen Faktoren. Dagegen zeigten diese überexprimierenden Linien während erhöhtem Salzstress eine signifikante Verzögerung der Seneszenz und eine höhere Quantenausbeute des PS II im Vergleich zu den Kontrollpflanzen. Die Ergebnisse weisen sehr deutlich auf eine positive Regulation von AtPDP1 auf die Salztoleranz und erhöhte Empfindlichkeit gegenüber biotischem Stress hin. Daher wird angenommen, dass AtPDP1 durch komplexe Signalwege und Wechselwirkungen während der Stressadaptation reguliert wird. N2 - Activation of mitogen-activated protein (MAP) kinases is a common reaction of plant cells in defense-related signal transduction pathways. Since the downstream events after the activation of MAP kinases are largely unknown in plants, the role of MAP kinases in the co-ordinate regulation of defense reactions and primary carbon metabolism by stress related stimuli has been analyzed in tomato. Thus, the relationship between mitogen activated protein kinases (LpMPK2 and LpMPK3) and extracellular invertases Lin6, as the key enzyme of an apoplasmic phloem unloading pathway, has been analyzed. The results showed that the mRNAs of LpMPK3 and Lin6 are sequentially induced by the same set of stress related stimuli (E-Fol, PGA,wounding, and KCl). The induction of the Lin6 promotor, as revealed by an increase in β-glucuronidase activity after 2 hours, was dependent both on the expression and activation of LpMPK3. These data suggest that the induction of extracellular invertase Lin6 by stress related stimuli requires LpMPK3. Glucose, metabolic molecule, was shown to result in the simultaneous induction of AtMPK4 and AtMPK6 activities that could be separated by anion-exchange chromatography, and characterized by differential cross-reaction with MAP kinase antibodies. Taken together, these data suggest that the activation of MAP inases play central roles in the regulation of sugar signaling. Stomatal movement is controlled by environmental signals including light intensity,humidity and atmospheric CO2 level. In Arabidopsis, a complete MAP kinase signaling cascade regulates stomatal development and patterning. However, the movement of stomata mediated by CO2 induced signaling pathways is not fully studied in higher plants. Here, we show that elevated levels of CO2 induce rapid and transient activation of SIPK and NtMPK4. The activation of both MAP kinases may regulate the anion channel activation for stomatal movement by the elevated level CO2. Up to now, the non-antioxidant function of tocopherol is not clear in higher plant,whereas the ability of tocopherol to modulate the stress tolerance mediated by function of antioxidant has been described in numerous studies. Thus, the function of α-tocopherol in stimuli-induced signal transduction pathways mediated by MAP kinase has been analyzed in tobacco. It has been shown that the activation of MAP kinase was induced by treatment of fungal elicitor and α-tocopherol phosphate but not α-tocopherol. Interestingly, α-tocopherol showed the transient inhibitory effect on the activation of stimuli-induced MAP Kinases in BY2 cells and tobacco plants, whereas ascorbate did not inhibit the activation of MAP kinases. The inhibitory activity test indicated that current application may indirectly affect the activity of MAP kinases. These results suggest that α-tocopherol can negatively regulate stimuliinduced signal transduction pathways via inactivation of MAP kinases. The purine-analogues have been tested and reported to be specific inhibitors of protein kinases mediated by structural-based selectivity in mammalian. Here, we tested C2, N6, N9-trisubstituted purines to determine basic relationship between their chemical structure and inhibitory activity using a particular plant MAP kinase. The modification of substitution in position C2 and N9 caused the increased inhibitory activity of 6-(benzylamino) purine analogue. In addition, 6-(isopentenylamino) purine analogues suggested that addition of a methyl group to position N9 caused at least 2-fold increased inhibitory activity compared with the addition of isopropyl group.Taken together, our study suggests that the selectivity and potency of inhibitors can be improved by structure modification. In addition, we have characterized the physiological function of Arabidopsis thaliana PLAT domain protein 1 (AtPDP1) in modulating the interaction of defense pathways mediated by biotic and abiotic factors. Interestingly, overexpression of AtPDP1 resulted in increasing susceptibility of virulent pathogens and necrotrophic fungus, and developing necrosis induced by unknown biotic factors. However, these overexperssion lines showed the significantly delayed senescence and higher level of phosystem II quantum yield compared with control plants against high salt stress. Our results strongly indicate that AtPDP1 positively regulate with salt tolerance, and enhances the sensitivity to biotic stresses. We propose that the AtPDP1 might be regulated with the complex pathways of interplay among various signaling during stress adaptation. KW - Signaltransduktion KW - (Signal transduction pathways) Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-34978 ER - TY - THES A1 - Joshi, Hemant Kumar T1 - Function of IRAK2 in macrophages and HECTD1 in B cells T1 - Funktion von IRAK2 in makrophagen und HECTD1 in B zellen N2 - The Immune system exerts its response against invading pathogens via a cumulative, sequential cooperation of immune cells coordinated by their secreted products. Immune cells, such as macrophages and dendritic cells (DCs), express toll-like receptors (TLRs) to sense the presence of pathogens through pathogen-associated molecular patterns (PAMPs). The interaction of PAMPs with TLRs elicits a cytosolic signaling cascade that enhances the expression of genes to stimulate inflammation. Interleukin 1 receptor-associated kinase 2 (IRAK2) is a component of the TLR signaling pathway. IRAK2 transduces the TLR signal via a direct interaction with TNF receptor-associated factor 6 (TRAF6) and subsequent enhancement of its ubiquitination. During my PhD thesis, I determined that a 55-amino acid long stretch at the C-terminal end of IRAK2 is important for TLR signaling. Overexpression of C-terminal truncated IRAK2 (IRAK2Δ55) in the murine macrophage cell line RAW 264.7 led to impaired CD40 expression after TLR4 stimulation by Lipopolysaccharide (LPS). I observed attenuated competency of IRAK2Δ55 in restoring a full TLR signaling response i.e. IL-6 secretion, NO production and CD40 expression in IRAK2-deficient RAW cells generated via CRISPR-Cas9 approach. Additionally, diminished TLR4 induced activation of nuclear factor κB (NF-κB) and extracellular signal related kinase (ERK) was observed with IRAK2Δ55 reconstituted RAW cells as compared to cell reconstituted with wildtype IRAK2. IRAK2Δ55 reconstituted RAW cells also exhibited reduced TLR4-induced cell death and phosphorylation of receptor interacting protein kinase 3 (RIP3). Co-immunoprecipitation experiments in HEK 293T cells showed that IRAK2Δ55 was still able to bind to TRAF6 alike IRAK2 but failed to induce ubiquitination of TRAF6. In conclusion, the results suggest that the IRAK2 TRAF6 interaction is not sufficient to sustain full TLR signaling. An C-terminus-dependent unknown molecular mechanism is also involved. Through my PhD work, I also analyzed a B cell lineage-specific HECTD1 knock-out mice. HECTD1 is an E3 ubiquitin ligase for various substrate proteins, such as heat shock protein 90 (HSP90), adenomatous polyposis coli and phosphatidylinositol phosphate kinase type 1 γ. Hsp90 regulates a variety of signaling molecules in NF-κB activation pathways which are essential for an optimal B cell response. HECTD1-deficient pro-B cells developed normally into mature B cells. However, TLR4 stimulated HECTD1-deficient B cells displayed reduced immunoglobulin (Ig) production in in vitro cultures. In addition, mice with HECTD1-deficient B cells showed a diminished Ig response after nitrophenylacetyl-keyhole limpet hemocyanin immunization. Thus, HECTD1 is necessary for efficient Ig secretion. N2 - Auf das Eindringen von Pathogenen in den Körper antwortet das Immunsystem mit einer kumulativen, sequenziellen und wechselseitigen Zusammenarbeit zwischen Immunzellen, ihren Oberflächenrezeptoren sowie den von ihnen sezernierten Mediatoren. Immunzellen, wie Makrophagen und dendritische Zellen (DZ), sind dabei in der Lage mittels Toll-like Rezeptoren (TLRs) das Vorhandensein von Pathogenen über Pathogen-assoziierte molekulare Muster (pathogen-associated molecular patterns, PAMPs) zu detektieren. Die Bindung von PAMPs an TLRs führt über intrazelluläre Signalkaskaden zu einer verstärkten Expression pro-inflammatorischer Gene und damit zur Initiierung einer Immunreaktion. Die Interleukin 1 Rezeptor-assoziierte Kinase 2 (IRAK2) ist einer Komponente der TLR Signalkaskade. IRAK2 bindet direkt an den TNF-Rezeptor-assozierten Faktor 6 (TRAF6), welcher daraufhin verstärkt ubiquitiniert wird. In meiner Promotionsarbeit habe ich einen 55 Aminosäure langen Abschnitt im C-Terminus von IRAK2 identifiziert, der für die Signalleitung von TLRs essentiell ist. Die Überexpression von mutierten IRAK2, dem dieser C-terminale Bereich fehlt (IRAK2∆55), in der murinen Macrophagen Zelllinie RAW 264.7 führte zu einer verminderten Expression von CD40 nach Stimulation des TLR4 durch Lipopolysaccharid (LPS). Wurden IRAK2-defiziente RAW Zellen mit dem mutierten IRAK2∆55 Gen rekonstituiert, zeigten diese Zellen verglichen mit Zellen, die mit dem wildtypischen Gen rekonstituiert wurden, eine verminderte Aktivierung des nuclear factor κB (NF-κB) und der extracellular signal related kinase (ERK) nach Stimulation des TLR4. Ebenso waren die Expression von CD40, die Sekretion von IL-6 und NO gestört. In IRAK2-defizienten und IRAK2∆55 RAW Zellen war eine Reduktion des durch TLR4 induzierten Zelltodes sowie der TLR4-induzierten Phosphorylierung der Rezeptor-interagierenden Proteinkinase 3 (RIP3) zu beobachten. Ko-Immunpräzipitationsexperimente mit HEK 293T Zellen zeigten, dass IRAK2∆55 genauso wie intaktes IRAK2 zwar in der Lage ist, TRAF6 zu binden, aber nicht dessen Ubiquitinylierung zu induzieren. Die Ergebnisse dieser Arbeit zeigen, dass die Interaktion von IRAK2 mit TRAF6 für ein optimales TLR-Signal nicht ausreichend ist und deshalb ein bisher unbekannter Mechanismus an der Signalweiterleitung beteiligt sein muss. Dieser Mechanismus ist vom C-terminalen Ende von IRAK2 abhängig. In einem zweiten Teil meiner Doktorarbeit analysierte ich B-Zellen von Mäusen, in denen HECTD1-spezifisch in der B-Zellentwicklungslinie deletiert wurde. HECTD1 ist eine E3 Ubiquitin-Ligase für zahlreiche Substratproteine, wie bspw. dem Hitzeschock-Protein (heat-shock-protein, HSP90), dem adenomatösen Polyposis coli Protein oder der Phosphatidylinositol Phosphatkinase Typ 1 γ. HSP90 reguliert eine Vielzahl an Signalmolekülen im NF-κB Signalweg, die für eine optimale B-Zell-Antwort wesentlich sind. HECTD1-defiziente pro-B-Zellen entwickelten sich normal zu reifen B-Zellen. Die Stimulation des TLR4 auf HECTD1-defizienten B-Zellen führte in vitro zu einer im Vergleich zu wildtypischen B-Zellen reduzierten Immunglobulin-Sekretion. Eine reduzierte Immunglobulin-Antwort konnte auch in B-Zell-spezifischen hectd1-/- Mäusen beobachtet werden, wenn diese zuvor mit Schlitzschnecken-Hämocyanin (Keyhole Limpet Hemocyanin, NP-KLH) immunisiert wurden. Die reduzierte Produktion von Antikörpern durch HECTD1-defiziente B-Zellen zeigt, dass dieses Protein für diese zentrale Aufgabe von B-Zellen notwendig ist. KW - Toll-like-Rezeptoren KW - IRAK2 KW - HECTD1 KW - Signaltransduktion KW - TLR signaling Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-150846 ER - TY - THES A1 - Sibilski, Claudia T1 - Identification and characterization of the novel mKSR1 phosphorylation site Tyr728 and its role in MAPK signaling T1 - Identifizierung und Charakterisierung der neuartigen mKSR1-Phosphorylierungsstelle Tyr728 und deren Rolle in der MAPK-Signalkaskade N2 - In mammals, KSR1 functions as an essential scaffold that coordinates the assembly of RAF/MEK/ERK complexes and regulates intracellular signal transduction upon extracellular stimulation. Aberrant activation of the equivalent MAPK signaling pathway has been implicated in multiple human cancers and some developmental disorders. The mechanism of KSR1 regulation is highly complex and involves several phosphorylation/dephosphorylation steps. In the present study, a number of novel in vivo phosphorylation sites were detected in mKSR1 by use of mass spectrometry analysis. Among others, Tyr728 was identified as a unique regulatory residue phosphorylated by LCK, a Src kinase family member. To understand how phosphorylation of Tyr728 may regulate the function of KSR1 in signal transduction and cellular processes, structural modeling and biochemical studies were integrated in this work. Computational modeling of the mKSR1(KD) protein structure revealed strong hydrogen bonding between phospho-Tyr728 and the residues surrounding Arg649. Remarkably, this pattern was altered when Tyr728 was non-phosphorylated or substituted. As confirmed by biochemical analysis, Arg649 may serve as a major anchor point for phospho-Tyr728 in order to stabilize internal structures of KSR1. In line with the protein modeling results, mutational studies revealed that substitution of Tyr728 by phenylalanine leads to a less compact interaction between KSR1 and MEK, a facilitated KSR1/B-RAF binding and an increased phosphorylation of MEK in complex with KSR1. From these findings it can be concluded that phospho-Tyr728 is involved in tightening the KSR1/MEK interaction interface and in regulating the phosphorylation of KSR1-bound MEK by either RAF or KSR1 kinases. Beside the Tyr728, Ser722 was identified as a novel regulatory phosphorylation site. Amino acid exchanges at the relevant position demonstrated that Ser722 regulates KSR1-bound MEK phosphorylation without affecting KSR1/MEK binding per se. Due to its localization, Ser722 might consequently control the catalytic activity of KSR1 by interfering with the access of substrate (possibly MEK) to the active site of KSR1 kinase. Together with Ser722, phosphorylated Tyr728 may further positively affect the kinase activity of KSR1 as a consequence of its vicinity to the activation and catalytic loop in the KSR1(KD). As revealed by structural modeling, phospho-Tyr728 builds a hydrogen bond with the highly conserved Lys685. Consequently, phospho-Tyr728 has a stabilizing effect on internal structures involved in the catalytic reaction and possibly enhances the phosphate transfer within the catalytic cleft in KSR1. Considering these facts, it seems very likely that the LCK-dependent phosphorylation of Tyr728 plays a crucial role in the regulation of KSR1 catalytic activity. Results of fractionation and morphology analyses revealed that KSR1 recruits LCK to cytoskeleton for its phosphorylation at Tyr728 suggesting that this residue may regulate cytoskeleton dynamics and, consequently, cell motility. Beside that, phosphorylation of Tyr728 is involved in the regulation of cell proliferation, as shown by a significantly reduced population doubling time of KSR1-Y728F cells compared to cells expressing wild type KSR1. Taken together, tyrosine phosphorylation in KSR1 uncovers a new link between Src family kinases and MAPK signaling. Tyr728, the novel regulatory phosphorylation site in murine KSR1, may coordinate the transition between the scaffolding and the catalytic function of KSR1 serving as a control point used to fine-tune cellular responses. N2 - KSR1 fungiert bei Säugetieren als zentrales Gerüstprotein, welches die Anordnung von RAF/MEK/ERK-Komplexen koordiniert und die intrazelluläre Signalweiterleitung nach extrazellulärer Stimulation reguliert. Eine abweichende Aktivierung des entsprechenden MAPK-Signalwegs wurde mit vielen humanen Krebsformen und einigen Entwicklungsstörungen in Verbindung gebracht. Der Mechanismus der KSR1-Regulierung ist hochgradig komplex und involviert mehrfach Schritte der Phosphorylierung/Dephosphorylierung. In der vorliegenden Studie wurden etliche neue in-vivo-Phosphorylierungsstellen in mKSR1 mittels massenspektrometrischer Analyse entdeckt. Neben anderen wurde Tyr728 als besonderer regulatorischer Rest identifiziert, welcher durch LCK, einem Mitglied der Src-Kinase-Familie, phosphoryliert wird. Um zu verstehen wie die Phosphorylierung von Tyr728 die Funktion von KSR1 innerhalb der Signalweiterleitung und zellulärer Prozesse regulieren könnte, wurden strukturelle Modellierungen und biochemische Untersuchungen in diese Arbeit integriert. Die Computermodellierung der mKSR1(KD)-Proteinstruktur zeigte starke Wasserstoff- brückenbindungen zwischen Phospho-Tyr728 und den Resten in der Umgebung von Arg649 auf. Dieses Muster war auffällig verändert, wenn Tyr728 nicht phosphoryliert oder substituiert war. Wie anhand biochemischer Analyse untermauert wurde, könnte Arg649 für phospho-Tyr728 als Hauptankerpunkt dienen, um interne Strukturen in KSR1 zu stabilisieren. In Übereinstimmung mit den Ergebnissen der Proteinmodellierung enthüllten die Mutationsstudien, dass die Substitution von Tyr728 mit Phenylalanin zu einer weniger kompakten Interaktion zwischen KSR1 und MEK, einer erleichterten KSR1/B-RAF-Bindung und einer ansteigenden Phosphorylierung von MEK im Komplex mit KSR1 führt. Anhand dieser Erkenntnisse kann man rückschließen, dass Phospho-Tyr728 in die Verstärkung der Interaktionen innerhalb der KSR1/MEK-Grenzfläche und in die Regulierung der Phosphorylierung von KSR1-gebundenem MEK durch entweder RAF- oder KSR1-Kinasen involviert ist. Neben Tyr728 wurde Ser722 als eine neuartige regulatorische Phosphorylierungsstelle identifiziert. Aminosäureaustausche an der betreffenden Position demonstrierten, dass Ser722 die Phosphorylierung von KSR1-gebundenem MEK reguliert ohne die KSR1/MEK-Bindung selbst zu beeinträchtigen. Bedingt durch seine Lokalisierung könnte Ser722 folglich die katalytische Aktivität von KSR1 kontrollieren, indem es den Zugang des Substrates (möglicherweise MEK) zur aktiven Seite der KSR1-Kinase behindert. Zusammen mit Ser722 könnte phosphoryliertes Tyr728 ferner die Kinaseaktivität von KSR1 positiv beeinflussen, infolge von dessen Nähe zur Aktivierungs- und katalytischen Schleife in der KSR1(KD). Wie mittels Strukturmodellierung offengelegt wurde, bildet Phospho-Tyr728 eine Wasserstoffbrücke mit dem hochgradig konservierten Lys685 aus. Folglich hat Phospho-Tyr728 einen stabilisierenden Effekt auf interne Strukturen, welche in die katalytische Reaktion involviert sind, und erleichtert möglicherweise den Phosphattransfer innerhalb der katalytischen Spalte in KSR1. In Anbetracht dieser Fakten scheint es sehr wahrscheinlich, dass die LCK-abhängige Phosphorylierung von Tyr728 eine äußerst wichtige Rolle in der Regulierung der katalytischen Aktivität von KSR1 spielt. Die Ergebnisse der Fraktionierungs- und Morphologieanalysen enthüllten, dass KSR1 für die Phosphorylierung an Tyr728 LCK zum Zytoskelett rekrutiert, was darauf hindeutet, dass dieser Rest die Dynamik des Zytoskeletts und folglich Zellmotilität regulieren könnte. Darüber hinaus ist die Phosphorylierung von Tyr728 in die Regulierung der Zellproliferation involviert, wie anhand einer bedeutend reduzierten Populationsverdopplungszeit von KSR1-Y728F-Zellen im Vergleich zu Zellen, welche wildtypisches KSR1 exprimieren, gezeigt wurde. Zusammenfassend lässt sich sagen, dass die Tyrosin-Phosphorylierung in KSR1 eine neue Verknüpfung zwischen Kinasen der Src-Familie und der MAPK-Signalwirkung enthüllt. Tyr728, die neuartige regulatorische Phosphorylierungsstelle in Maus-KSR1, könnte den Übergang zwischen der Gerüst- und der katalytischen Funktion von KSR1 koordinieren und damit als Kontrollpunkt dienen, um zelluläre Reaktionen fein abzustimmen. KW - MAP-Kinase KW - Signaltransduktion KW - Regulation KW - tyrosine phosphorylation KW - KSR1 KW - LCK KW - MAPK KW - phosphorylation KW - signaling Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-114672 ER - TY - THES A1 - Gan, Qiang T1 - Investigation on Distinct Roles of Smad Proteins in Mediating Bone Morphogenetic Proteins Signals T1 - Untersuchung auf Unterschiedliche Rollen von Smad Proteinen in der Signalübertragung der Knochenmorphogenetischen Proteine N2 - Knochenmorphogenetische Proteine (engl. Bone morphogenetic Proteins, BMPs) sind eine Bestandteil von transforming growth factor-β (TGF-β)-Superfamilie und spielen wichtige Rollen in zahlreichen biologischen Ereignissen in der Entwicklung fast aller mehrzelligen Organismen. Fehlregulierte BMP-Signalweg ist die zugrunde liegenden Ursachen von zahlreichen erblichen und nicht erblichen Krankheiten wie Krebs. Die von BMP induziete breite Palette von biologischen Reaktionen konvergiert auf drei eng verwandten Smad Proteine. Sie vermitteln intrazelluläre Signale von BMP-Rezeptoren in den Zellkern. Die Spezifität des BMP-Signalwegs wurde intensiv auf der Ebene der Ligand-Rezeptor-Wechselwirkungen erforscht, aber, wie die verschiedenen Smad Proteine die durch BMPs hervorgerufen differenziellen Signale beitragen, bleibt unklar. In dieser Arbeit haben wir die BMP / Smad Signalweg in verschiedenen Aspektenuntersucht. Auf der Suche nach einem geeigneten Fluoreszenz-Reporter im Zebrafisch, verglichen wir verschiedene photo-schaltbaren Proteine und fand EosFP der beste Kandidat für diesen Modellorganismus im Bezug auf seine schnelle Reifung und Fluoreszenz-Intensität. Wir haben durch molekulare Modifizierung geeignete Vektoren erstellt, die Tol2-Transposon basieren trangenesis im Zebrafisch zu ermöglichen. Damit wurden schließlich transgenzebrafisch-Linien erzeugt. Wir kombinierten Fluoreszenz-Protein-Tagging mit hochauflösender Mikroskopie und untersuchten die Dynamik der Smad-Proteine in Modellsystem Zebrafisch. Es wurde beobachteten, dass Smad5 Kern-Translokation erfährt, als BMP Signalgeber bei Zebrafisch Gastrulation. Wir erkundeten die Beteiligung der Smad Proteine während der Myogenese-zu-Osteogenese Umwandlung von C2C12 Zelllinie, die durch BMP4 induziert wurde. Mit siRNA versuchten wir die endogene Smad Proteine niederzuschlagen, wobei die Auswirkungen auf diesen gekoppelten noch unterschiedlichen Verfahren durch quantitative real-time PCR und Terminal-Marker Färbung ausgewertet. Wir spekulieren, dass verschiedene Smad-Komplex Stöchiometrie für unterschiedliche durch BMPs hervorgerufe zelluläre Signale verantwortlich sein könnte. N2 - Bone morphogenetic proteins (BMPs) belong to the transforming growth factor-β (TGF-β) superfamily and play important roles in numerous biological events in the development of almost all multi-cellular organisms. Dysregulated BMP signaling is the underlying causes of numerous heritable and non-heritable human diseases including cancer. The vast range of biological responses induced by BMPs converges on three closely related Smad proteins that convey intracellular signals from BMP receptors to the nucleus. The specificity of BMP signaling has been intensively investigated at the level of ligand-receptor interactions, but how the different Smad proteins contribute to differential signals elicited by BMPs remains unclear. In this work, we investigated the BMP/Smad signaling in different aspects. In search for an appropriate fluorescence reporter in zebrafish, we compared different photo-switchable proteins and found EosFP the best candidate this model system for its fast maturation and fluorescence intensity. We modified and created appropriate vectors enabling Tol2-transposon based trangenesis in zebrafish, with which transgenic zebrafish lines were generated. We combined fluorescence protein tagging with high resolution microscopy and investigate the dynamics of Smad proteins in model system zebrafish. We observed that Smad5 undergoes nucleo-translocation as BMP signal transmitter during zebrafish gastrulation. We explored the Smad involvement during myogenic-to-osteogenic conversion of C2C12 cell line induced by BMP4. We created transient loss-of-function of Smads by siRNA-mediated knockdowns and analyzed the effects on these coupled yet distinct procedures by quantitative real-time PCR and terminal marker staining. We found that different Smad-complex stoichiometry might be responsible for distinct cellular signals elicited by BMPs. KW - Knochen-Morphogenese-Proteine KW - Zebrabärbling KW - Signaltransduktion KW - Bone morphogenetic proteins KW - Smad KW - Signaling KW - Zebrafish KW - Cell line KW - Differentiation KW - Differenzierung KW - Zelllinie KW - Zebrafisch Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-71127 ER - TY - THES A1 - Schwärzel, Martin T1 - Localizing engrams of olfactory memories in Drosophila T1 - Lokalisation von Duftgedächtnissen in Drosophila N2 - Zars and co-workers were able to localize an engram of aversive olfactory memory to the mushroom bodies of Drosophila (Zars et al., 2000). In this thesis, I followed up on this finding in two ways. Inspired by Zars et al. (2000), I first focused on the whether it would also be possible to localize memory extinction.While memory extinction is well established behaviorally, little is known about the underlying circuitry and molecular mechanisms. In extension to the findings by Zars et al (2000), I show that aversive olfactory memories remain localized to a subset of mushroom body Kenyon cells for up to 3 hours. Extinction localizes to the same set of Kenyon cells. This common localization suggests a model in which unreinforced presentations of a previously learned odorant intracellularly antagonizes the signaling cascades underlying memory formation. The second part also targets memory localization, but addresses appetitive memory. I show that memories for the same olfactory cue can be established through either sugar or electric shock reinforcement. Importantly, these memories localize to the same set of neurons within the mushroom body. Thus, the question becomes apparent how the same signal can be associated with different events. It is shown that two different monoamines are specificaly necessary for formation of either of these memories, dopamine in case of electric shock and octopamine in case of sugar memory, respectively. Taking the representation of the olfactory cue within the mushroom bodies into account, the data suggest that the two memory traces are located in the same Kenyon cells, but in separate subcellular domains, one modulated by dopamine, the other by octopamine. Taken together, this study takes two further steps in the search for the engram. (1) The result that in Drosophila olfactory learning several memories are organized within the same set of Kenyon cells is in contrast to the pessimism expressed by Lashley that is might not be possible to localize an engram. (2) Beyond localization, a possibible mechanism how several engrams about the same stimulus can be localized within the same neurons might be suggested by the models of subcellular organisation, as postulated in case of appetitive and aversive memory on the one hand and acquisition and extinction of aversive memory on the other hand. N2 - Troy Zars und seine Mitarbeiter konnten für das olfaktorische Elektoschockgedächtnis von Drosophila zum ersten mal die Spur eines Duftgedächtnisses in den Pilzkörpern (PK) lokalisieren. Darauf aufbauend stelle ich nun in dieser Arbeit zwei Fragen: 1. Wäre es möglich auch den Prozess der Auslöschung dieses Gedächtnissen zu lokalisieren? Obwohl die Verhaltensphysiologie der Gedächtnisauslöschung sehr gut charakterisiert sind weiss man sehr wenig über die daran beteiligten molekularen Signalmechanismen und Strukturen. In Anlehnung an die Arbeit von Zars et al. (2000) kann ich zeigen, dass sowohl die Speicherung wie auch die Auslöschung dieses Gedächt-nisses in den gleichen Kenyonzellen der PK geschieht. Diese gemeinsame zelluläre Lokalisierung legt ein Model nahe, in dem die wiederholte Präsentation des mit Elektro-schock assoziierten Duftes während der Auslöschung, intrazellulär auf die gleichen Signalwege wirkt die auch für die Bildung des Duftgedächtnisses notwendig sind. 2. Wäre es möglich auch die Spur eines attraktive Duftgedächtnisses zu lokalisieren? Ich kann zeigen, dass Gedächtnisse über den gleichen Duft sowohl attraktiv als auch repulsiv sein können, je nachdem ob Zucker oder Elektroshock während der pavlovschen Konditionierung benutzt wird. Beide Gedächtnisse sind im gleichen Satz von Kenyonzellen lokalisiert. Dies wirft die Frage auf, wie das gleiche Duftsignal mit zwei verschiedenen Ereignissen (Zucker und Elektroschock) assoziiert werden kann. Es zeigt sich, dass zwei unterschiedliche Monoamine jeweils spezifisch für das Anlegen eines der beiden Gedächtnisse verantwortlich sind; Dopamin für das Electroschockgedächtnis und Octopamin für das Zuckergedächtnis. Berücksichtigt man wie Duftreize in den PK kodiert sind, ergibt sich ein Model bei dem zwar beide Spuren in einer Zelle lokalisiert sind, diese jedoch durch die Nutzung unterschiedlicher subzellulärer Bereiche voneinander getrennt werden. Jeweils einer dieser Bereiche wäre durch Dopamin moduliert, der andere durch Octopamin. Das Fazit dieser Studie ist, dass zwei wichtige Punkte bei der Lokalisierung von Gedächtnis-spuren aufgezeigt wurden. (1) Die Tatsache, dass beim Duftlernen von Drosophila mehrere Spuren verschiedener Duftgedächtnisse lokalisiert worden sind widerlegt die von Lashley aufgestellte Behauptung, dass Gedächtnisse nicht lokalisierbar sind. (2) Verschiedene Spuren können für den gleichen Duft in den gleichen Zellen angelegt werden, sofern man eine subzelluläre Organisation annimmt, wie sie sowohl für Zucker- und Elektroschockgedächtnis, als auch Gedächtnisbildung und Auslöschen vorgeschlagen werden KW - Taufliege KW - Gedächtnis KW - Lernen KW - Signaltransduktion KW - Gedächtnis KW - Verhalten KW - Catecholamine KW - Signaltransduktion KW - Lernen KW - Memory KW - Behaviour KW - catecholamines KW - signaltransduction KW - learning Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-5065 ER - TY - THES A1 - Wangorsch, Gaby T1 - Mathematical modeling of cellular signal transduction T1 - Mathematische Modellierung der zellulären Signaltransduktion N2 - A subtly regulated and controlled course of cellular processes is essential for the healthy functioning not only of single cells, but also of organs being constituted thereof. In return, this entails the proper functioning of the whole organism. This implies a complex intra- and inter-cellular communication and signal processing that require equally multi-faceted methods to describe and investigate the underlying processes. Within the scope of this thesis, mathematical modeling of cellular signaling finds its application in the analysis of cellular processes and signaling cascades in different organisms. ... N2 - Das fein regulierte und kontrollierte Ablaufen zellulärer Prozesse ist essentiell für das gesunde Funktionieren einzelner Zellen, sowie der aus ihnen bestehenden Organe. Diese wiederum bedingen das Funktionieren des gesamten Organismus. Genauso vielschichtig wie die Kommunikation und Signalverarbeitung innerhalb und zwischen den Zellen, sind die Methoden um diese Vorgänge zu beschreiben und zu untersuchen. Die mathematische Modellierung zellulärer Signalverarbeitung findet im Rahmen dieser Arbeit Anwendung in der Analyse zellulärer Prozesse und Signalkaskaden in verschiedenen Organismen.... KW - Mathematische Modellierung KW - Thrombozyt KW - Systembiologie KW - Mathematische Modellierung KW - Mathematical modeling KW - platelets KW - signaling pathway KW - systems biology KW - Signaltransduktion Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-87746 ER - TY - THES A1 - Harth, Stefan T1 - Molecular Recognition in BMP Ligand-Receptor Interactions T1 - Molekulare Erkennung in BMP Ligand-Rezeptor Interaktionen N2 - Bone Morphogenetic Proteins (BMPs) are secreted multifunctional signaling proteins that play an important role during development, maintenance and regeneration of tissues and organs in almost all vertebrates and invertebrates. BMPs transmit their signals by binding to two types of serine-/threonine-kinase receptors. BMPs bind first to their high affinity receptor, thereby recruiting their low affinity receptor into the complex. This receptor assembly starts a Smad (Small mothers against decapentaplegic) protein signaling cascade which regulates the transcription of responsive genes. Up to date, only seven type I and five type II receptors are known for more than 30 ligands. Therefore, many BMP ligands can recruit more than one receptor subtype. Vice versa, receptors can bind to several ligands, indicating a highly promiscuous ligand-receptor interaction. This raises the following questions: (i) How are BMPs able to induce ligand-specific signals, despite forming complexes with identical receptor composition and (ii) how are they able to recognize and bind various binding partners in a highly specific manner. From the ligand’s point of view, heterodimeric BMPs are valuable tools for studying the interplay between different sets of receptors, thereby providing new insights into how the various BMP signals can be generated. This study describes the expression and purification of the heterodimers BMP-2/6 and -2/7 from E.coli cells. BIAcore interaction studies and various in vitro cell activity assays revealed that the generated heterodimers are biologically active. Furthermore, BMP-2/6 and -2/7 exhibit a higher biological activity in most of the cell assays compared to their homodimeric counterparts. In addition, the BMP type I receptor BMPR-IA is involved in heterodimeric BMP signaling. However, the usage of other type I receptor subtypes (e.g. ActR-I) building a heteromeric ligand-receptor type I complex as indicated in previous works could not be determined conclusively. Furthermore, BMP heterodimers seem to require only one type I receptor for signaling. From the receptors’ point of view, the BMP type I receptor BMPR-IA is a prime example for its promiscuous binding to different BMP ligands. The extracellular binding interface of BMPR-IA is mainly unfolded in its unbound form, requiring a large induced fit to adopt the conformation when bound to its ligand BMP-2. In order to unravel whether the binding promiscuity of BMPR-IA is linked to structural plasticity of its binding interface, the interaction of BMPR-IA bound to an antibody Fab fragment was investigated. The Fab fragment was selected because of its ability to recognize the BMP-2 binding epitope on BMPR-IA, thus neutralizing the BMP-2 mediated receptor activation. This study describes the crystal structure of the complex of the extracellular domain of BMPR-IA bound to the antibody Fab fragment AbyD1556. The crystal structure revealed that the contact surface of BMPR-IA overlaps extensively with the contact surface of BMPR-IA for BMP-2 interaction. Although the contact epitopes of BMPR-IA to both binding partners coincide, the three-dimensional structures of BMPR-IA in both complexes differ significantly. In contrast to the structural differences, alanine-scanning mutagenesis of BMPR-IA showed that the functional determinants for binding to both the antibody and BMP-2 are almost identical. Comparing the structures of BMPR-IA bound to BMP-2 or to the Fab AbyD1556 with the structure of unbound BMPR-IA revealed that binding of BMPR-IA to its interaction partners follows a selection fit mechanism, possibly indicating that the ligand promiscuity of BMPR-IA is inherently encoded by structural adaptability. N2 - „Bone Morphogenetic Proteins” (BMPs) sind sezernierte multifunktionelle Signalproteine, die eine wichtige Rolle während der Entwicklung, Aufrechterhaltung und Regeneration von Geweben und Organen in fast allen Vertebraten und wirbellosen Tieren spielen. Die BMP-Signalgebung wird durch die Bindung an zwei Typen von Serin/Threonin Rezeptorkinasen eingeleitet. Hierbei binden BMPs zuerst an ihren hochaffinen Rezeptor, bevor der niederaffine Rezeptor in den Komplex eingefügt wird. Durch das Zusammenfügen beider Rezeptortypen wird eine von Smad (Small mothers against decapentaplegic)-Proteinen gesteuerte Signalkaskade gestartet, die letztendlich die Transkription responsiver Gene reguliert. Aktuell sind nur sieben Typ I und fünf Typ II Rezeptoren für mehr als 30 Liganden bekannt. Viele BMP-Liganden können demzufolge mehr als einen Rezeptorsubtyp rekrutieren. Umgekehrt jedoch können auch Rezeptoren an unterschiedliche Liganden binden, was auf eine im hohen Maße promiske Ligand-Rezeptor-Interaktion hinweist. Dabei stellen sich folgende Fragen: (i) Wie können BMPs ligandspezifische Signale erzeugen, obwohl sie dafür die gleichen Rezeptoren benutzen? (ii) Und wie können BMPs unterschiedliche Bindungspartner erkennen und trotzdem hochspezifisch an diese binden? Von Blickwinkel der Liganden aus betrachtet stellen heterodimere BMPs wertvolle Hilfsmittel dar, um das Zusammenspiel zwischen den verschiedenen Rezeptortypen zu studieren. Darüber hinaus können sie neue Einblicke in die Entstehung von unterschiedlichen BMP-Signalen gewähren. In dieser Doktorarbeit wird die Expression und Aufreinigung von heterodimeren BMP-2/6 und -2/7 aus E.coli Zellen beschrieben. Mittels BIAcore Interaktionsstudien und in vitro Aktivitätsassays in Säugerzellen konnte gezeigt werden, dass die hergestellten Heterodimere biologisch aktiv sind. Darüber hinaus zeigen BMP-2/6 and -2/7 in den meisten Zellassays eine höhere biologische Aktivität als ihre homodimeren Gegenstücke. Außerdem konnte nachgewiesen werden, dass der BMP Typ I Rezeptor BMPR-IA an der Signalgebung von heterodimeren BMPs involviert ist. Eine Beteiligung weiterer Typ I Rezeptoren (wie z.B. die von ActR-I), die einen heteromeren Ligand-Rezeptor Typ I Signalkomplex bilden, wie es bereits in früheren Studien gezeigt wurde, konnte jedoch experimentell nicht eindeutig belegt werden. Des Weiteren lassen die Ergebnisse darauf schließen, dass heterodimere BMPs für eine erfolgreiche Signalweiterleitung nur die Präsenz eines einzelnen Typ I Rezeptors benötigen. Von Blickwinkel der Rezeptoren aus betrachtet, ist der BMP Typ I Rezeptor BMPR-IA ein Paradebeispiel für promiskes Bindeverhalten an verschiedene BMP-Liganden. Das extra-zelluläre Kontaktepitop von BMPR-IA ist im Wesentlichen ungefaltet, wenn BMPR-IA in freier ungebundener Form vorliegt. Infolge dessen durchläuft die Binderegion in BMPR-IA weit reichende strukturelle Veränderungen, um die erforderliche Konformation auszubilden, die für die Bindung an BMP-2 essentiell ist. Um herauszufinden, ob das promiske Binde-verhalten von BMPR-IA mit einer strukturellen Plastizität seiner Binderegion einhergeht, wurde die Interaktion zwischen BMPR-IA und einem Antikörper Fab Fragment experimentell untersucht. Das Fab Fragment wurde aufgrund folgender Eigenschaft ausgewählt, nämlich an das BMP-2 Bindeepitop des Rezeptors anzudocken, um so eine BMP-2 vermittelte Rezeptoraktivierung zu verhindern. In dieser Doktorarbeit wird die Kristallstruktur des Komplexes, bestehend aus der extrazellulären Domäne von BMPR-IA und dem Antikörper Fab Fragment AbyD1556 beschrieben. Die Kristallstruktur zeigt, dass die Kontaktoberfläche von BMPR-IA zu einem sehr großen Teil mit der Kontaktoberfläche bei der Interaktion mit BMP-2 übereinstimmt. Obwohl das Kontaktepitop von BMPR-IA zu beiden Bindungspartnern weitestgehend deckungsgleich ist, unterscheiden sich die dreidimensionalen Strukturen von BMPR-IA in beiden Komplexen sehr stark voneinander. Im Gegensatz zu den strukturellen Differenzen zeigt jedoch eine Mutationsanalyse, bei der wichtige Aminosäuren mit Alanin ausgetauscht wurden, dass die funktionellen Determinanten, die die Bindung an den Antikörper und an BMP-2 bestimmen, beinahe die gleichen sind. Wenn man die Strukturen von BMPR-IA, das an BMP-2 bzw. an das Fab Fragment AbyD1556 gebunden ist, mit der Struktur von ungebundenem BMPR-IA vergleicht, so fällt auf, dass die Bindung von BMPR-IA an seine Bindungspartner einem sog. „Selektions-Anpassungsmechanismus“ folgt, was möglicherweise zeigt, dass das promiske Ligand-Bindeverhalten von BMPR-IA von Natur aus durch seine strukturelle Anpassungsfähigkeit festgelegt wird. KW - Knochen-Morphogenese-Proteine KW - Ligand KW - Molekulare Erkennung KW - Transforming Growth Factor beta KW - Strukturaufklärung KW - Proteinfaltung KW - Proteinkristallographie KW - Heterodimer KW - BMP-2/6 KW - BMP-2/7 KW - BMPR-IA KW - Rezeptor KW - Signaltransduktion KW - protein crystallography KW - signal transduction KW - heterodimer Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-52797 ER -