TY - JOUR A1 - Martens, Suzanne A1 - Bensch, Michael A1 - Halder, Sebastian A1 - Hill, Jeremy A1 - Nijboer, Femke A1 - Ramos-Murguialday, Ander A1 - Schoelkopf, Bernhard A1 - Birbaumer, Niels A1 - Gharabaghi, Alireza T1 - Epidural electrocorticography for monitoring of arousal in locked-in state JF - Frontiers in Human Neuroscience N2 - Electroencephalography (EEG) often fails to assess both the level (i.e., arousal) and the content (i.e., awareness) of pathologically altered consciousness in patients without motor responsiveness. This might be related to a decline of awareness, to episodes of low arousal and disturbed sleep patterns, and/or to distorting and attenuating effects of the skull and intermediate tissue on the recorded brain signals. Novel approaches are required to overcome these limitations. We introduced epidural electrocorticography (ECoG) for monitoring of cortical physiology in a late-stage amytrophic lateral sclerosis patient in completely locked-in state (CLIS) Despite long-term application for a period of six months, no implant related complications occurred. Recordings from the left frontal cortex were sufficient to identify three arousal states. Spectral analysis of the intrinsic oscillatory activity enabled us to extract state-dependent dominant frequencies at <4, similar to 7 and similar to 20 Hz, representing sleep-like periods, and phases of low and elevated arousal, respectively. In the absence of other biomarkers, ECoG proved to be a reliable tool for monitoring circadian rhythmicity, i.e., avoiding interference with the patient when he was sleeping and exploiting time windows of responsiveness. Moreover, the effects of interventions addressing the patient's arousal, e.g., amantadine medication, could be evaluated objectively on the basis of physiological markers, even in the absence of behavioral parameters. Epidural ECoG constitutes a feasible trade-off between surgical risk and quality of recorded brain signals to gain information on the patient's present level of arousal. This approach enables us to optimize the timing of interactions and medical interventions, all of which should take place when the patient is in a phase of high arousal. Furthermore, avoiding low responsiveness periods will facilitate measures to implement alternative communication pathways involving brain-computer interfaces (BCI). KW - temporal-lobe epilepsy KW - neuroprosthetic devices KW - brain computer interface KW - event-related potentials KW - intraoperative electrocoicography KW - electrocorticography KW - epidural recording KW - locked-in state KW - coma KW - consciousness KW - paralyzed patients KW - EEG KW - sleep KW - communication KW - frequencies KW - amyotrophic-lateral-sclerosis Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-114863 VL - 8 ER - TY - JOUR A1 - Real, Ruben G. L. A1 - Kotchoubey, Boris A1 - Kübler, Andrea T1 - Studentized continuous wavelet transform (t-CWT) in the analysis of individual ERPs: real and simulated EEG data N2 - This study aimed at evaluating the performance of the Studentized Continuous Wavelet Transform (t-CWT) as a method for the extraction and assessment of event-related brain potentials (ERP) in data from a single subject. Sensitivity, specificity, positive (PPV) and negative predictive values (NPV) of the t-CWT were assessed and compared to a variety of competing procedures using simulated EEG data at six low signal-to-noise ratios. Results show that the t-CWT combines high sensitivity and specificity with favorable PPV and NPV. Applying the t-CWT to authentic EEG data obtained from 14 healthy participants confirmed its high sensitivity. The t-CWT may thus be well suited for the assessment of weak ERPs in single-subject settings. KW - electroencephalogram KW - wavelet KW - EEG KW - t-CWT KW - significance KW - detection KW - ERP Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-113581 ER -