TY - THES A1 - Kampka, Justyna T1 - Funktionelle Analyse der Histon-Demethylase UTX in hämatopoetisch differenzierenden murinen ES-Zellen T1 - Functional analysis of the histone demethylase UTX during hematopoietic murine ESC differentiation N2 - Murine embryonale Stammzellen (ES-Zellen) stellen mit ihrem Selbsterneuerungs- und Differenzierungspotenzial einen einzigartigen Zelltyp für die Grundlagenforschung und angewandte Wissenschaften dar. Auf Grund ihrer Fähigkeit, in vitro die embryonale Entwicklung eines Organismus nachzuahmen, sind sie für die Untersuchung der Zell-Differenzierung, wie z.B. der embryonalen Hämatopoese geeignet. Während der ES-Zell-Selbsterneuerung und -Differenzierung spielen epigenetischen Modifikationen, unter anderem Histon-Methylierungen, eine wichtige Rolle. Transkriptionell aktivierende (H3K4me2/3, di- bzw. trimethyliertes Lysin 4 an Histon 3) und reprimierende (H3K27me2/3; di- bzw. trimethyliertes Lysin 27 an Histon 3) Histon-Methylierungs-Muster und die epigenetische Gen-Regulierung werden unter anderem durch die entgegenwirkenden PcG- und MLL-Protein-Komplexe koordiniert. Die H3K27me2/3-spezifische Demethylase UTX/KDM6A ist eine Komponente des MLL-Komplexes und somit an aktivierenden Gen-Regulationsmechanismen beteiligt. Im Rahmen dieser Arbeit war es mein Ziel zu untersuchen, inwieweit UTX für die Aufrechterhaltung der ES-Zell-Pluripotenz und für die ES-Zell-Differenzierung, insbesondere die hämatopoetische Differenzierung, von Bedeutung ist. Meine Daten zeigten, dass UTX in undifferenzierten ES-Zellen, während der ES-Zell-Differenzierung und in adulten Geweben ubiquitär exprimiert ist. Um Aufschluss über die UTX-Funktion zu bekommen, wurde UTX in ES-Zellen mittels RNA-Interferenz und Gene-Targeting gezielt ablatiert. Genexpressions-Analysen zeigten, dass die Expression von Pluripotenzgenen, genauso wie die Zellproliferation und die Verteilung der Zellzyklus-Phasen in ES-Zellen durch den Verlust von UTX unbeeinflusst blieben, während globale H3K4me3- sowie H3K27me3-Level reduziert waren. Während der ES-Zell-Differenzierung konnte ich eine verminderte Induktion der mesodermalen und hämatopoetischen Marker Flk1, Brachyury, Runx1 und Gata1 beobachten. Zudem war die Expression von UTY, dem auf dem Y-Chromosom kodierten UTX-Homolog, in ES-Zellen und während der Differenzierung runterreguliert, was auf eine Regulierung durch UTX schließen lässt. Des Weiteren zeigten UTX-Knockdown und –Knockout-Zellen in funktionellen hämatopoetischen in vitro Assays eine verminderte Fähigkeit, Blast-Kolonien und hämatopoetische Vorläuferzellen zu generieren. Interessanterweise zeigten ChIP-Analysen in differenzierenden wt und UTX-Knockout-EBs unveränderte H3K27me3-Level an Promotoren der hämatopoetischen Gene, was auf eine Demethylase-unabhängige Funktion von UTX während der frühen Hämatopoese hindeutet. Um die Funktion von UTX während der Entwicklung in vivo, insbesondere während der embryonalen Hämatopoese, untersuchen zu können, habe ich eine konditionelle UTX-Knockout-Maus hergestellt, die für eine gezielte UTX-Deletion im hämatopoetischen System verwendet wird. Zusammenfassend zeigen meine Daten, dass UTX für die ES-Zell-Proliferation und –Pluripotenz unbedeutend ist und die Reduzierung der H3K27-Trimethylierung auch bei fehlendem UTX weiterhin herbeigeführt werden kann. Im Gegensatz dazu übernimmt UTX eine entscheidende Rolle während der mesodermalen und hämatopoetischen ES-Zell-Differenzierung, vermutlich über eine Histon-Demethylase-unabhängige Funktion. N2 - Mouse embryonic stem cells (ESCs) through their potential to self-renew and to differentiate provide a unique cell type for basic and applied research. Due to their ability to mimic the embryonic development of an organism in vitro, they are suitable for the study of cellular differentiation such as embryonic hematopoiesis. ESC self-renewal and differentiation are associated with epigenetic modifications, including histone methylation. The opposing PcG and MLL protein complexes coordinate transcriptionally repressing (H3K27me2/3, di- and trimethylated histone 3 at lysine 27) and activating (H3K4me2/3; di- and trimethylated histone 3 at lysine 4) histone methylation patterns respectively, and epigenetic gene regulation. The H3K27me2/3-specific demethylase UTX/KDM6A is a component of the MLL complex and thus involved in transcriptional activation of gene expression. Within the scope of my thesis, I aimed to analyze to what extent UTX contributes to the maintenance of ESC pluripotency and differentiation, in particular to the hematopoietic differentiation. My data showed that UTX is ubiquitously expressed in undifferentiated ESCs, during ESC differentiation and in adult tissue. In order to study the UTX specific function, I specifically down-regulated UTX in ESCs via RNA interference and gene targeting. Gene expression profiling of ESCs showed that the expression of pluripotency genes, as well as cell proliferation and cell cycle phase distribution remained unaffected by the loss of UTX. However, global H3K4me3 and H3K27me3 levels were reduced. I observed a decreased induction of the mesodermal and hematopoietic genes Flk1, Brachyury, Runx1 and Gata1 in differentiating ESCs. Furthermore, the expression of UTY, the homologue of UTX encoded on the Y chromosome, was down- regulated in ESCs and in EBs, suggesting a regulatory function of UTX. In addition, using functional hematopoietic in vitro assays, UTX knockdown and knockout cells showed reduced blast colony formation and decreased differentiation of hematopoietic progenitor cells. Interestingly, ChIP analysis of wt and UTX KO EBs revealed comparable enrichment of H3K27me3 at the promoters of the hematopoietic genes, suggesting a demethylase independent role for UTX during early hematopoiesis. In order to investigate the role of UTX during development in vivo, particularly during embryonic hematopoiesis, I generated a conditional UTX knockout mouse, which will be used for a specific deletion of UTX in the hematopoietic system. In conclusion, my data revealed that UTX is insignificant for ESC proliferation and pluripotency and that the loss of H3K27 trimethylation is induced even in the absence of UTX. Furthermore, the data reported in this work suggest that UTX is required for mesodermal and hematopoietic ESC differentiation, presumably via a histone demethylase independent function. KW - Hämatopoese KW - Epigenetik KW - Embryonale Stammzellen KW - Histon-Demethylase UTX Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-108058 ER - TY - THES A1 - Varagnolo, Linda T1 - PRC2 inhibition counteracts the culture-associated loss of engraftment potential of human cord blood-derived hematopoietic stem/progenitor cells T1 - Die Inhibition des PRC2 wirkt dem Kultur-bedingten Verlust des Repopulationspotenzials in humanen hämatopoetischen Stammzellen/Vorläuferzellen aus Nabelschnurblut entgegen N2 - Cord blood hematopoietic stem cells (CB-HSCs) are an outstanding source for the treatment of a variety of malignant and non-malignant disorders. However, the low amount of cells collected per donor is often insufficient for treatment of adult patients. In order to make sufficient numbers of CB-HSCs available for adults, expansion is required. Different approaches were described for HSC expansion, however these approaches are impeded by the loss of engrafting potential during ex vivo culture. Little is known about the underlying molecular mechanisms. Epigenetic mechanisms play essential roles in controlling stem cell potential and fate decisions and epigenetic strategies are considered for HSC expansion. Therefore, this study aimed to characterize global and local epigenotypes during the expansion of human CB-CD34+, a well established CB progenitor cell type, to better understand the molecular mechanisms leading to the culture-associated loss of engrafting potential. Human CB-CD34+ cells were cultured using 2 different cytokine cocktails: the STF cocktail containing SCF, TPO, FGF-1 and the STFIA cocktail, which combines STF with Angiopoietin-like 5 (Angptl5) and Insulin-like growth factor-binding protein 2 (IGFBP2). The latter expands CB-HSCs ex vivo. Subsequently, the NOD-scid gamma (NSG) mouse model was used to study the engraftment potential of expanded cells. Engraftment potential achieved by fresh CB-CD34+ cells was maintained when CB-CD34+ cells were expanded under STFIA but not under STF conditions. To explore global chromatin changes in freshly isolated and expanded CB-CD34+ cells, levels of the activating H3K4me3 and the repressive H3K27me3 histone marks were determined by chromatin flow cytometry and Western blot analyses. For analysis of genome-wide chromatin changes following ex vivo expansion, transcriptome profiling by microarray and chromatin immunoprecipitation combined with deep sequencing (ChIP-seq) were performed. Additionally, local chromatin transitions were monitored by ChIP analyses on promoter regions of developmental and self-renewal factors. On a global level, freshly isolated CD34+ and CD34- cells differed in H3K4me3 and H3K27me3 levels. After 7 days of expansion, CD34+ and CD34- cells adopted similar levels of active and repressive marks. Expanding the cells without IGFBP2 and Angptl5 led to a higher global H3K27me3 level. ChIP-seq analyses revealed a cytokine cocktail-dependent redistribution of H3K27me3 profiles. Chemical inhibition of the H3K27 methyltransferase EZH2 counteracted the culture-associated loss of NSG engraftment potential. Collectively, the data presented in this study revealed that by adding epigeneticly active compounds in the culture media we observed changes on a chromatin level which counteracted the loss of engraftment potential. H3K27me3 rather than H3K4me3 may be critical to establish a specific engraftment supporting transcriptional program. Furthermore, I identified a critical function for the Polycomb repressive complex 2-component EZH2 in the loss of engraftment potential during the in vitro expansion of HPSCs. Taken together this thesis provides a better molecular understanding of chromatin changes upon expansion of CB-HSPCs and opens up new perspectives for epigenetic ex vivo expansion strategies. N2 - Hämatopoetische Stammzellen aus Nabelschnurblut (CB-HSCs) sind eine bedeutende Quelle für die Behandlung einer Vielzahl maligner und nicht-maligner Erkrankungen. Allerdings ist die geringe Anzahl an Stammzellen, die von einem Spender gewonnen werden kann, meist nicht ausreichend für die Rekonstitution des hämatopoetischen Systems erwachsener Patienten. Um eine ausreichende Menge an CB-HSCs zu gewinnen, ist eine Expansion der Zellen erforderlich. Verschiedene Ansätze zur ex vivo Expansion von HSCs wurden beschrieben, allerdings waren diese Ansätze durch den Verlust des Repopulationspotentials während der ex vivo Kultivierung nicht umsetzbar. Über die zugrundeliegenden Mechanismen ist wenig bekannt. Epigenetische Mechanismen spielen eine entscheidende Rolle in der Kontrolle von Selbsterneuerung und Differenzierung von Stammzellen. Aus diesem Grund werden epigenetische Strategien zur HSC-Expansion in Betracht gezogen. Das Ziel dieser Studie war, globale und lokale Epigenotypen während der Expansion humaner CB-CD34+-Zellen (CB-Vorläuferzellen) zu charakterisieren. Diese Studien sollten zu einem besseren Verständnis der molekularen Mechanismen, welche zum Kultivierungs-assoziierten Verlust des Repopulationspotentials führen. Humane CB-CD34+-Zellen wurden in zwei verschiedene Zytokin-Cocktails kultiviert: Der sogenannte STF-Cocktail, welcher SCF, TPO und FGF-1 enthält und der STFIA-Cocktail, welcher STF mit Angptl5 und IGFBP2 kombiniert. Aus der Literatur war zu Beginn dieser Doktorarbeit war bekannt, dass CB-HSCs ex vivo in STFIA, nicht aber in STF expandiert werden können. In Übereinstimmung mit diesem Befund zeigen die hier vorgestellten heterologen Transplantationsexperimente, dass das Repopulationspotential frischer CB-CD34+-Zellen nur erhalten blieb, wenn die Zellen unter STFIA, jedoch nicht, wenn sie unter STF-Bedingungen expandiert waren. Um die globalen Chromatinveränderungen frisch isolierter und expandierter Zellen zu untersuchen, wurden die Level der aktivierenden Histonmodifikation H3K4me3 und der repressiven H3K27me3-Modifikation durch Chromatin-Durchflusszytometrie und Western Blot Analyse bestimmt. Zur Analyse der genomweiten Chromatinveränderungen nach ex vivo Expansion wurden Transkriptomprofile durch Mikroarray und Chromatin-Immunpräzipitation, in Kombination mit Deep-Sequencing (ChiP-Seq) durchgeführt. Zusätzlich wurden lokale Chromatinveränderungen durch ChiP-Analysen an Promotorregionen von Entwicklungs- und Selbsterneuerungs-Faktoren analysiert. Auf globaler Ebene unterschieden sich frisch isolierte CD34+ und CD34- Zellen in ihren H3K4me3 und H3K27me3 Leveln. Nach siebentägiger Expansion nahmen CD34+ und CD34- Zellen ähnliche Level aktiver und repressiver Markierungen an. Die Expansion der Zellen ohne IGFBP2 und Angptl5 führte zu höheren globalen H3K27me3 Leveln. ChiP-seq Analysen zeigten eine Zytokin-Cocktail-abhängige Neuverteilung von H3K27me3 Mustern. Die chemische Inhibition der H3K27me-Transferase EZH2 wirkte dem Kultivierungs-assoziierten Verlust des NSG Repopulationspotentials entgegen. Zusammenfassend zeigen diese Daten, dass durch die Zugabe von spezifischen Zytokinen in das Kulturmedium Veränderungen auf Chromatinebene verbunden sind, die dem kultivierungs-assoziierten Verlust des Repopulationspotentials entgegen wirken. Diese Daten zeigen weiterhin, dass die durch die PRC2 Komponente EZH2 vermittelte H3K27me3, nicht jedoch die H3K4me3 Histonmodifikation ein kritischer Faktor für die Etablierung eines die Repopulation fördernden Transkriptionsprogrammes ist. Somit dient diese Arbeit einem besseren molekularen Verständnis der Chromatinveränderungen während der Expansion von CB-HSPCs und eröffnet eine Perspektive für neue epigenetische ex vivo Expansionsstrategien. KW - Epigenetik KW - Hämatopoese KW - PRC2 KW - Cord blood-derived hematopoietic stem and progenitor cells KW - Hematopoietic stem cell ex-vivo expansion Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-108073 ER - TY - THES A1 - Hofstetter, Christine T1 - Inhibition of H3K27me-Specific Demethylase Activity During Murine ES cell Differentiation Induces DNA Damage Response T1 - Inhibierung der H3K27me-Spezifischen Demethylase Aktivität in Murin Differenzierenden ES Zellen Induziert die DNA Schadensantwort N2 - Stem cells are defined by their capacity to self-renew and their potential to differentiate into multiple cell lineages. Pluripotent embryonic stem (ES) cells can renew indefinitely while keeping the potential to differentiate into any of the three germ layers (ectoderm, endoderm or mesoderm). For decades, ES cells are in the focus of research because of these unique features. When ES cells differentiate they form spheroid aggregates termed “embryoid bodies” (EBs). These EBs mimic post- implantation embryonic development and therefore facilitate the understanding of developmented mechanisms. During ES cell differentiation, de-repression or repression of genes accompanies the changes in chromatin structure. In ES cells, several mechanisms are involved in the regulation of the chromatin architecture, including post-translational modifications of histones. Post-translational histone methylation marks became one of the best- investigated epigenetic modifications, and they are essential for maintaining pluripotency. Until the first histone demethylase KDM1A was discovered in 2004 histone modifications were considered to be irreversible. Since then, a great number of histone demethylases have been identified. Their activity is linked to gene regulation as well as to stem cell self-renewal and differentiation. KDM6A and KDM6B are H3K27me3/2-specific histone demethylases, which are known to play a central role in the regulation of posterior development by regulating HOX gene expression. So far less is known about the molecular function of KDM6A or KDM6B in undifferentiated and differentiating ES cells. In order to completely abrogate KDM6A and KDM6B demethylase activity in undifferentiated and differentiating ES cells, a specific inhibitor (GSK-J4) was employed. Treatment with GSK-J4 had no effect on the viability or proliferation on ES cells. However, in the presence of GSK-J4 ES cell differentiation was completely abrogated with cells arrested in G1-phase and an increased rate of apoptosis. Global transcriptome analyses in early-differentiating ES cells revealed that only a limited set of genes were differentially regulated in response to GSK-J4 treatment with more genes up- regulated than down-regulated. Many of the up-regulated genes are linked to DNA damage response (DDR). In agreement with this, DNA damage was found in EBs incubated with GSK-J4. A co-localization of H3K27me3 or KDM6B with γH2AX foci, marking DNA breaks, could be excluded. However, differentiating Eed knockout (KO) ES cells, which are devoid of the H3K27me3 mark, showed an attenuated GSK-J4- induced DDR. Finally, hematopoietic differentiation in the presence of GSK-J4 resulted in a reduced colony-forming potential. This leads to the conclusion that differentiation in the presence of GSK-J4 is also restricted to hematopoietic differentiation. In conclusion, my results show that the enzymatic activity of KDM6A and KDM6B is not essential for maintaining the pluripotent state of ES cells. In contrast, the enzymatic activity of both proteins is indispensable for ES cell and hematopoietic differentiation. Additionally KDM6A and KDM6B enzymatic inhibition in differentiating ES cells leads to increased DNA damage with an activated DDR. Therefore, KDM6A and KDM6B are associated with DNA damage and in DDR in differentiating ES cells. N2 - Stammzellen sind definiert durch ihre Fähigkeit zur Selbsterneuerung und dem Potential in multiple Zellinien zu differenzieren. Pluripotente embryonale Stammzellen (ES Zellen) können sich fortlaufend erneuern und besitzen zudem das Potential, in alle drei Keimblätter (Ektoderm, Endoderm oder Mesoderm) zu differenzieren. Auf Grund dieser einzigartigen Eigenschaften sind ES Zellen seit Jahrzehnten im Focus der Wissenschaft. Wenn ES Zellen differenzieren, sind sie in der Lage, sphäroid-förmige Aggregate zu bilden, welche als embryoide Körperchen (EBs) bezeichnet werden. In EBs finden sich Zellen aller 3 Keimblätter und daher dienen sie als in vitro Modell für frühe embryonale Entwicklung. Während der ES Zell Differenzierung verändert die De-repression oder Repression von Genen die Struktur des Chromatins. ES Zellen besitzen eine Vielzahl von Mechanismen, die mit der Regulation des Chromatins assoziiert sind, einschließlich post-translationale Modifikationen an Histonen. Post-translationale Histon- methylierung gehören zu den am häufigsten untersuchten epigenetischen Modifikationen und spielen z.B. ein wichtige Rolle bei der Aufrechterhaltung der Pluripotenz. Bis zur Entdeckung der ersten Histon-Demethylase KDM1A im Jahre 2004 glaubte man, dass Modifikationen an Histonen irreversible sind. Bislang wurden jedoch eine Vielzahl an Histon-Demethylasen identifiziert, welche mit der Genregulation, sowie der Selbsterneuerung und Differenzierung von Stammzelle in Verbindung gebracht werden konnten. KDM6A und KDM6B sind H3K27me3/2-spezifische Histon-Demethylasen, welche bei der posterioren Entwicklung durch Regulation der Hox Gene eine wichtige Rolle spielen. Bislang ist über die molekulare Funktion von KDM6A und KDM6B in nicht differenzierten und differenzierenden ES Zellen wenig bekannt. Um die KDM6A und KDM6B Demethylase Aktivität in nicht differenzierten und differenzierenden ES Zellen außer Kraft zu setzten kam ein spezifischer Inhibitor (GSK-J4) zum Einsatz. Die Behandlung mit GSK-J4 zeigte keine Auswirkungen auf die Viabilität oder Proliferation von nicht differenzierten ES Zellen. Jedoch war die Differenzierung von ES Zellen in Gegenwart von GSK-J4 inhibiert und zeigte einen erhöhten G1-Phase Arrest sowie eine erhöhte Rate an apoptotischen Zellen. Eine globale Transkriptionsanalyse in frühen differenzierenden ES Zellen, in Gegenwart von GSK- J4 zeigte, dass lediglich eine relativ geringe Zahl von Genen differenziell reguliert war. Dabei waren mehr Gene hochreguliert als herunterreguliert. Viele der hochregulierten Gene konnten mit der DNA Schadensantwort in Verbindung gebracht werden. In Übereinstimmung damit konnte in Gegenwart von GSK-J4 in differenzierenden ES Zellen DNA Schaden nachgewiesen werden. Eine Kolokalisation von H3K27me3 oder KDM6B mit γH2AX markierten Foci, welche DNA Schaden markieren, konnte nicht nachgewiesen werden. Nichts desto trotz zeigten GSK-J4 behandelte, differenzierende Eed KO ES Zellen, welche keine H3K27me3 Modifikation besitzen, eine abgemilderte DNA Schadensantwort. In Anwesenheit von GSK-J4 konnte während der hämatopoetischen Differenzierung eine reduzierte Kolonie-Bildung beobachtet werden. Daraus lässt sich schließen, dass in Anwesenheit von GSK-J4 ebenfalls auch die hämatopoetische Differenzierung inhibiert wird. Zusammenfassend zeigen meine Ergebnisse, dass die enzymatische Aktivität von KDM6A und KDM6B für die Aufrechterhaltung des pluripotenten Zustands nicht essenziell ist. Im Gegensatz dazu ist die enzymatische Aktivität von beiden Proteinen unabdingbar für die ES Zell sowie die hämatopoetische Differenzierung. Die enzymatische Inhibierung von KDM6A und KDM6B führt während der Differenzierung zu einem erhöhten DNA Schaden, wodurch die DNA Schadensantwort aktiviert wird. Somit sind KDM6A und KDM6B mit DNA Schaden und der DNA Schadensantwort assoziiert. KW - Embryonale Stammzelle KW - Epigenetic KW - Maus KW - Histone KW - Demethylierung KW - DNS-Schädigung KW - Epigenetik Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-107023 ER - TY - THES A1 - Schneider [geb. Hansmann], Tamara T1 - Epigenetische Effekte der in vitro-Maturation von Eizellen auf DNA-Methylierungsprofile entwicklungsrelevanter Gene im Modellorganismus Bos taurus T1 - Epigenetic effects of in vitro maturation of oocytes on DNA methylation profiles of developmentally important genes in the model organism Bos taurus N2 - Assistierte Reproduktionstechniken (ARTs) zur Behandlung von Infertilität werden mit einer erhöhten Häufigkeit von epigenetischen Aberrationen während der Gametogenese und der frühen Embryonalentwicklung in Verbindung gebracht, speziell durch eine Beeinträchtigung von geprägten Genen. Die in vitro-Maturation (IVM) von Eizellen ist eine ART, die bereits routinemäßig zur Reproduktion von ökonomisch wertvollen Zuchttieren wie dem Hausrind (Bos taurus) eingesetzt wird. IVM-Oozyten weisen jedoch eine verringerte Entwicklungs-kompetenz zum Blastozystenstadium dar, welche möglicherweise auf eine beeinträchtigte epigenetische Regulation zurückzuführen ist. Von allen bekannten epigenetischen Mechanismen ist die DNA-Methylierung die meist untersuchte DNA-Modifikation. In dieser Arbeit wurden zur Klärung der Frage nach den Auswirkungen der IVM auf die DNA-Methylierung geprägter als auch nicht geprägter Gene Oozyten des Hausrinds analysiert. Diese Tierart weist eine ähnliche Präimplantations-entwicklung und Tragezeit wie der Mensch auf und wird daher zunehmend als Modell zum Studium der humanen Keimzell- und Embryonalentwicklung herangezogen. Im Gegensatz zu Mensch und Maus gibt es bislang nur wenig Information über bovine geprägte Gene. Das erste Ziel der hier dargestellten Forschungsarbeiten war daher die Identifizierung und Charakterisierung der bovinen differenziell methylierten Regionen (DMRs) der drei geprägten Genorte von IGF2/H19, SNRPN und PEG3, welche mit Imprintingdefekten des Menschen und/oder im Mausmodell assoziiert werden. Die hier erstmalig erfolgte Beschreibung von mehreren intergenischen DMRs mittels Bisulfitsequenzierung und Pyrosequenzierung belegt die Existenz und evolutionäre Konservierung der IGF2/H19-Imprintingkontrollregion (ICR) beim Rind. Der geprägte Zustand der IGF2/H19-ICR sowie der bovinen Gene SNRPN und PEG3 wurde durch den Nachweis differenzieller Methylierung in plazentalen und somatischen Geweben sowie in Spermien und parthenogenetischen Embryonen bestätigt. Die beobachteten Methylierungsprofile waren typisch für genomische Prägung. Die direkte Bisulfitsequenzierung nach vorangegangener Limiting Dilution (LD) erlaubt die Analyse von Methylierungsmustern einzelner Allele (DNA-Moleküle) von einigen wenigen oder auch nur einer einzigen Zelle (El Hajj et al., 2011). In einem ersten LD-Versuch an bovinen Oozyten wurden die drei vorab charakterisierten und geprägten Gene hinsichtlich möglicher epigenetischer Veränderungen untersucht, welche durch verschiedene IVM-Bedingungen und -Medien (TCM und mSOF) hervorgerufen werden könnten. Die Gesamtrate von Methylierungsfehlern einzelner CpG-Stellen sowie die von ganzen Allelen (Imprintingfehlern) unterschied sich nicht wesentlich zwischen den beiden IVM-Gruppen und der in vivo-Gruppe. Dieses Ergebnis weist darauf hin, dass die gängigen IVM-Protokolle keinen oder nur einen geringfügigen Einfluss auf diese entscheidenden epigenetischen Markierungen haben. IVM-Oozyten präpuberaler Kälber weisen eine herabgesetzte Entwicklungskompetenz im Vergleich zu IVM-Oozyten aus adulten Tieren auf. Aus diesem Grund wurde in einem zweiten LD-Versuchsansatz die Promotormethylierung von drei entwicklungsrelevanten, nicht geprägten Genen (SLC2A1, PRDX1, ZAR1) nach ovarieller Stimulation mit FSH und/oder IGF1 untersucht. Sowohl ungereifte als auch in vitro-gereifte Oozyten präpuberaler und adulter Kühe zeigten eine deutliche, unbeeinträchtige Hypomethylierung der drei Genpromotoren ohne jegliche Unterschiede zwischen den verschiedenen Alterstypen der Spendertiere oder deren Behandlung. Weder das Alter, die hormonelle Stimulation noch die IVM scheinen somit einen Einfluss auf den Methylierungsstatus dieser drei Gene zu haben. Zusammenfassend spiegelte sich die reduzierte Entwicklungsfähigkeit von IVM-Eizellen aus adulten und präpuberalen Kühen nicht in abnormalen Methylierungsmustern der untersuchten geprägten und ungeprägten Gene wider. Dies lässt auf eine generelle Stabilität der etablierten DNA-Methylierungsprofile in Oozyten schließen. Aus diesem Grund müssen andere epigenetische Mechanismen als die DNA-Methylierung wie beispielsweise ncRNAs oder Histonmodifikationen zur Reduktion der Entwicklungskompetenz von präpuberalen und IVM-Oozyten beitragen. Diese Veränderungen behindern mutmaßlich die zytoplasmatische Reifung der Eizelle, welche wiederum zu einer späteren Beeinträchtigung der Entwicklung der Zygote und des Embryos führt. N2 - Infertility treatments by assisted reproductive technologies (ARTs) are associated with an increased incidence of epigenetic aberrations during gametogenesis and early embryo-genesis, specifically in imprinted genes. In vitro-maturation (IVM) of oocytes is an ART which is routinely applied for reproduction of agriculturally and economically important species like cattle (Bos taurus). However, IVM oocytes exhibit a reduced developmental competence to the blastocyst stage which may be caused by an impaired epigenetic regulation. Of all known epigenetic mechanisms DNA-methylation is the most studied DNA-modification. In this thesis, bovine oocytes have been analyzed in order to investigate the impact of IVM on the DNA-methylation of imprinted and non-imprinted genes. Because this species exhibits a similar preimplantation development and gestation length as humans, it is increasingly being used as a model for human germ-cell and embryo development. In contrast to humans and mice, only little information on bovine imprinted genes is available. Thus, the first attempt of the research presented here was to identify and characterize the bovine differentially methylated regions (DMRs) of the three imprinted loci, namely IGF2/H19, SNRPN and PEG3 which are each associated with imprinting defects in humans and/or the mouse model. The first description of several intergenic DMRs by bisulfite sequencing and pyrosequencing proved the existence of an intergenic IGF2/H19 imprinting control region (ICR) in the bovine. The imprinted status of the IGF2/H19-ICR as well as the bovine genes SNRPN and PEG3 was confirmed by differential methylation consistent with genomic imprinting in placental and somatic bovine tissues, in sperm and parthenogenetic embryos. Limiting Dilution (LD) Bisulfite Sequencing (El Hajj et al., 2011) followed by direct bisulfite sequencing allows the analysis of methylation profiles of individual alleles (DNA molecules) from only a few or even single cells. In a first approach using LD, the three characterized imprinted regions were analyzed to determine putative epigenetic alterations in bovine oocytes cultured with different types of IVM conditions and media (TCM and mSOF). The total rate of individual CpG and entire allele methylation errors did not differ significantly between the two IVM and the in vivo group, indicating that current IVM protocols have no or only marginal effects on these critical epigenetic marks. The developmental capacity of IVM oocytes from prepubertal calves is reduced compared with their IVM oocyte counterparts from adult animals. Therefore, in a second LD approach, the promoter methylation of three developmentally important, non-imprinted genes (SLC2A1, PRDX1, ZAR1) has been studied in IVM oocytes from prepubertal cattle after ovarial stimulation with FSH and/or IGF1. Both immature and in vitro matured prepubertal and adult oocytes showed unimpaired hypomethylation of the three gene promoters without differences between the different ages of donors and treatments. Thus, neither age nor hormonal treatment or IVM seem to influence the methylation status of these three genes. In conclusion, the reduced developmental capacity of IVM oocytes from adult and prepubertal cattle were not associated with aberrant methylation patterns of the investigated imprinted and non-imprinted genes suggesting a general stability of established DNA-methylation marks in oocytes. Therefore, epigenetic mechanisms other than DNA-methylation such as ncRNAs or histone modifications might confer to the reduced developmental competence of prepubertal and IVM oocytes. These factors are supposed to interfere with cytoplasmic maturation of the oocyte leading to an impaired development of the zygote and embryo rather than to influence nuclear maturation of the oocyte. KW - Epigenetik KW - DNA-Methylierung KW - Epigenetik KW - DNA-Methylierung KW - Bos taurus KW - Oozyten KW - Rind KW - DNS KW - Oozyte KW - Extrakorporale Befruchtung Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-98888 ER -