TY - JOUR A1 - Lehmann, Julian A1 - Jørgensen, Morten E. A1 - Fratz, Stefanie A1 - Müller, Heike M. A1 - Kusch, Jana A1 - Scherzer, Sönke A1 - Navarro-Retamal, Carlos A1 - Mayer, Dominik A1 - Böhm, Jennifer A1 - Konrad, Kai R. A1 - Terpitz, Ulrich A1 - Dreyer, Ingo A1 - Mueller, Thomas D. A1 - Sauer, Markus A1 - Hedrich, Rainer A1 - Geiger, Dietmar A1 - Maierhofer, Tobias T1 - Acidosis-induced activation of anion channel SLAH3 in the flooding-related stress response of Arabidopsis JF - Current Biology N2 - Plants, as sessile organisms, gained the ability to sense and respond to biotic and abiotic stressors to survive severe changes in their environments. The change in our climate comes with extreme dry periods but also episodes of flooding. The latter stress condition causes anaerobiosis-triggered cytosolic acidosis and impairs plant function. The molecular mechanism that enables plant cells to sense acidity and convey this signal via membrane depolarization was previously unknown. Here, we show that acidosis-induced anion efflux from Arabidopsis (Arabidopsis thaliana) roots is dependent on the S-type anion channel AtSLAH3. Heterologous expression of SLAH3 in Xenopus oocytes revealed that the anion channel is directly activated by a small, physiological drop in cytosolic pH. Acidosis-triggered activation of SLAH3 is mediated by protonation of histidine 330 and 454. Super-resolution microscopy analysis showed that the increase in cellular proton concentration switches SLAH3 from an electrically silent channel dimer into its active monomeric form. Our results show that, upon acidification, protons directly switch SLAH3 to its open configuration, bypassing kinase-dependent activation. Moreover, under flooding conditions, the stress response of Arabidopsis wild-type (WT) plants was significantly higher compared to SLAH3 loss-of-function mutants. Our genetic evidence of SLAH3 pH sensor function may guide the development of crop varieties with improved stress tolerance. KW - SLAH3 KW - S-type anion channel KW - hypoxia KW - pH KW - cytosolic acidification KW - flooding KW - PALM KW - stoichiometry Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-363320 VL - 31 ER - TY - JOUR A1 - Endesfelder, Ulrike A1 - Malkusch, Sebastian A1 - Flottmann, Benjamin A1 - Mondry, Justine A1 - Liguzinski, Piotr A1 - Verveer, Peter J. A1 - Heilemann, Mike T1 - Chemically Induced Photoswitching of Fluorescent Probes - A General Concept for Super-Resolution Microscopy N2 - We review fluorescent probes that can be photoswitched or photoactivated and are suited for single-molecule localization based super-resolution microscopy. We exploit the underlying photochemical mechanisms that allow photoswitching of many synthetic organic fluorophores in the presence of reducing agents, and study the impact of these on the photoswitching properties of various photoactivatable or photoconvertible fluorescent proteins. We have identified mEos2 as a fluorescent protein that exhibits reversible photoswitching under various imaging buffer conditions and present strategies to characterize reversible photoswitching. Finally, we discuss opportunities to combine fluorescent proteins with organic fluorophores for dual-color photoswitching microscopy. KW - Super-Resolution Microscopy KW - photoswitchable organic fluorophores KW - fluorescent proteins KW - super-resolution KW - PALM KW - dSTORM Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-74896 ER - TY - JOUR A1 - Endesfelder, Ulrike A1 - Malkusch, Sebastian A1 - Flottmann, Benjamin A1 - Mondry, Justine A1 - Liguzinski, Piotr A1 - Verveer, Peter J. A1 - Heilemann, Mike T1 - Chemically Induced Photoswitching of Fluorescent Probes - A General Concept for Super-Resolution Microscopy JF - Molecules N2 - We review fluorescent probes that can be photoswitched or photoactivated and are suited for single-molecule localization based super-resolution microscopy. We exploit the underlying photochemical mechanisms that allow photoswitching of many synthetic organic fluorophores in the presence of reducing agents, and study the impact of these on the photoswitching properties of various photoactivatable or photoconvertible fluorescent proteins. We have identified mEos2 as a fluorescent protein that exhibits reversible photoswitching under various imaging buffer conditions and present strategies to characterize reversible photoswitching. Finally, we discuss opportunities to combine fluorescent proteins with organic fluorophores for dual-color photoswitching microscopy. KW - Photoactivated localization microscopy KW - Fusion proteins KW - Molecules KW - Patterns KW - Switch KW - Limit KW - Time KW - photoswitchable organic fluorophores KW - fluorescent proteins KW - super-resolution KW - PALM KW - dSTORM Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-134080 VL - 16 IS - 4 ER -