TY - JOUR A1 - Ramírez-Rodríguez, Gloria Belén A1 - Pereira, Ana Rita A1 - Herrmann, Marietta A1 - Hansmann, Jan A1 - Delgado-López, José Manuel A1 - Sprio, Simone A1 - Tampieri, Anna A1 - Sandri, Monica T1 - Biomimetic mineralization promotes viability and differentiation of human mesenchymal stem cells in a perfusion bioreactor JF - International Journal of Molecular Sciences N2 - In bone tissue engineering, the design of 3D systems capable of recreating composition, architecture and micromechanical environment of the native extracellular matrix (ECM) is still a challenge. While perfusion bioreactors have been proposed as potential tool to apply biomechanical stimuli, its use has been limited to a low number of biomaterials. In this work, we propose the culture of human mesenchymal stem cells (hMSC) in biomimetic mineralized recombinant collagen scaffolds with a perfusion bioreactor to simultaneously provide biochemical and biophysical cues guiding stem cell fate. The scaffolds were fabricated by mineralization of recombinant collagen in the presence of magnesium (RCP.MgAp). The organic matrix was homogeneously mineralized with apatite nanocrystals, similar in composition to those found in bone. X-Ray microtomography images revealed isotropic porous structure with optimum porosity for cell ingrowth. In fact, an optimal cell repopulation through the entire scaffolds was obtained after 1 day of dynamic seeding in the bioreactor. Remarkably, RCP.MgAp scaffolds exhibited higher cell viability and a clear trend of up-regulation of osteogenic genes than control (non-mineralized) scaffolds. Results demonstrate the potential of the combination of biomimetic mineralization of recombinant collagen in presence of magnesium and dynamic culture of hMSC as a promising strategy to closely mimic bone ECM. KW - scaffold KW - perfusion bioreactor KW - collagen KW - apatite nanoparticles KW - magnesium KW - human mesenchymal stem cell KW - osteogenesis Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-285804 SN - 1422-0067 VL - 22 IS - 3 ER - TY - JOUR A1 - Jockel-Schneider, Yvonne A1 - Stoelzel, Peggy A1 - Hess, Jeanine A1 - Haubitz, Imme A1 - Fickl, Stefan A1 - Schlagenhauf, Ulrich T1 - Impact of a specific collagen peptide food supplement on periodontal inflammation in aftercare patients — a randomised controlled trial JF - Nutrients N2 - Background: This controlled clinical trial evaluated the impact of a specific collagen peptide food supplement on parameters of periodontal inflammation in aftercare patients. Methods: A total of 39 study patients were enrolled. At baseline, bleeding on probing (BoP; primary outcome), gingival index (GI), plaque control record (PCR), recession (REC) and probing pocket depth (PPD) for the calculation of the periodontal inflamed surface area (PISA) were documented. After subsequent professional mechanical plaque removal (PMPR), participants were randomly provided with a supply of sachets containing either a specific collagen peptide preparation (test group; n = 20) or a placebo (placebo group; n = 19) to be consumed dissolved in liquid once daily until reevaluation at day 90. Results: PMPR supplemented with the consumption of the specific collagen peptides resulted in a significantly lower mean percentage of persisting BoP-positive sites than PMPR plus placebo (test: 10.4% baseline vs. 3.0% reevaluation; placebo: 14.2% baseline vs. 9.4% reevaluation; effect size: 0.86). Mean PISA and GI values were also reduced compared to baseline, with a significant difference in favor of the test group (PISA test: 170.6 mm\(^2\) baseline vs. 53.7 mm\(^2\) reevaluation; PISA placebo: 229.4 mm\(^2\) baseline vs. 184.3 mm\(^2\) reevaluation; GI test: 0.5 baseline vs. 0.1 reevaluation; GI placebo: 0.4 baseline vs. 0.3 reevaluation). PCR was also significantly decreased in both experimental groups at revaluation, but the difference between the groups did not reach the level of significance. Conclusions: The supplementary intake of specific collagen peptides may further enhance the anti-inflammatory effect of PMPR in periodontal recall patients. KW - collagen KW - peptide fragment KW - bleeding on probing KW - gingival KW - food supplement KW - periodontitis KW - gingivitis Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-290471 SN - 2072-6643 VL - 14 IS - 21 ER - TY - JOUR A1 - Han, Chao A1 - Ren, Pengxuan A1 - Mamtimin, Medina A1 - Kruk, Linus A1 - Sarukhanyan, Edita A1 - Li, Chenyu A1 - Anders, Hans-Joachim A1 - Dandekar, Thomas A1 - Krueger, Irena A1 - Elvers, Margitta A1 - Goebel, Silvia A1 - Adler, Kristin A1 - Münch, Götz A1 - Gudermann, Thomas A1 - Braun, Attila A1 - Mammadova-Bach, Elmina T1 - Minimal collagen-binding epitope of glycoprotein VI in human and mouse platelets JF - Biomedicines N2 - Glycoprotein VI (GPVI) is a platelet-specific receptor for collagen and fibrin, regulating important platelet functions such as platelet adhesion and thrombus growth. Although the blockade of GPVI function is widely recognized as a potent anti-thrombotic approach, there are limited studies focused on site-specific targeting of GPVI. Using computational modeling and bioinformatics, we analyzed collagen- and CRP-binding surfaces of GPVI monomers and dimers, and compared the interacting surfaces with other mammalian GPVI isoforms. We could predict a minimal collagen-binding epitope of GPVI dimer and designed an EA-20 antibody that recognizes a linear epitope of this surface. Using platelets and whole blood samples donated from wild-type and humanized GPVI transgenic mice and also humans, our experimental results show that the EA-20 antibody inhibits platelet adhesion and aggregation in response to collagen and CRP, but not to fibrin. The EA-20 antibody also prevents thrombus formation in whole blood, on the collagen-coated surface, in arterial flow conditions. We also show that EA-20 does not influence GPVI clustering or receptor shedding. Therefore, we propose that blockade of this minimal collagen-binding epitope of GPVI with the EA-20 antibody could represent a new anti-thrombotic approach by inhibiting specific interactions between GPVI and the collagen matrix. KW - GPVI KW - collagen KW - blood platelets KW - thrombosis KW - anti-thrombotic therapies Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-304148 SN - 2227-9059 VL - 11 IS - 2 ER -