TY - JOUR A1 - Batsching, Sophie A1 - Wolf, Reinhard A1 - Heisenberg, Martin T1 - Inescapable Stress Changes Walking Behavior in Flies - Learned Helplessness Revisited JF - PLoS ONE N2 - Like other animals flies develop a state of learned helplessness in response to unescapable aversive events. To show this, two flies, one 'master', one 'yoked', are each confined to a dark, small chamber and exposed to the same sequence of mild electric shocks. Both receive these shocks when the master fly stops walking for more than a second. Behavior in the two animals is differently affected by the shocks. Yoked flies are transiently impaired in place learning and take longer than master flies to exit from the chamber towards light. After the treatment they walk more slowly and take fewer and shorter walking bouts. The low activity is attributed to the fly's experience that its escape response, an innate behavior to terminate the electric shocks, does not help anymore. Earlier studies using heat pulses instead of electric shocks had shown similar effects. This parallel supports the interpretation that it is the uncontrollability that induces the state. KW - learning KW - locomotion KW - animal behavior KW - behavioral conditioning KW - walking KW - vibration KW - light pulses KW - conditioned response Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-178640 VL - 11 IS - 11 ER - TY - JOUR A1 - Ruf, Franziska A1 - Fraunholz, Martin A1 - Öchsner, Konrad A1 - Kaderschabeck, Johann A1 - Wegener, Christian T1 - WEclMon - A simple and robust camera-based system to monitor Drosophila eclosion under optogenetic manipulation and natural conditions JF - PLoS ONE N2 - Eclosion in flies and other insects is a circadian-gated behaviour under control of a central and a peripheral clock. It is not influenced by the motivational state of an animal, and thus presents an ideal paradigm to study the relation and signalling pathways between central and peripheral clocks, and downstream peptidergic regulatory systems. Little is known, however, about eclosion rhythmicity under natural conditions, and research into this direction is hampered by the physically closed design of current eclosion monitoring systems. We describe a novel open eclosion monitoring system (WEclMon) that allows the puparia to come into direct contact with light, temperature and humidity. We demonstrate that the system can be used both in the laboratory and outdoors, and shows a performance similar to commercial closed funnel-type monitors. Data analysis is semi-automated based on a macro toolset for the open imaging software Fiji. Due to its open design, the WEclMon is also well suited for optogenetic experiments. A small screen to identify putative neuroendocrine signals mediating time from the central clock to initiate eclosion showed that optogenetic activation of ETH-, EH and myosuppressin neurons can induce precocious eclosion. Genetic ablation of myosuppressin-expressing neurons did, however, not affect eclosion rhythmicity. KW - chronobiology KW - infrared radiation KW - light pulses KW - molting KW - Drosophila melanogaster KW - optogenetics KW - eclosion Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170755 VL - 12 IS - 6 ER -